
FAsset v2 Bots
Source Code Review

© Coinspect 2024 1 / 69

FAssetV2 Bots
Source Code Review

Version: v240220 Prepared for: Flare December 2023

Source Code Review

Executive Summary

Summary of Findings

Solved issues & recommendations

Assessment and Scope

Scope and Reviewed Threats

Overview

Main Actors

Peripheral Entities and Services

Detailed Findings

Disclaimer

© Coinspect 2024 2 / 69

Appendix

Appendix A: IBlockChainWalletMultipleUTXOs, UTXO
and SpentReceivedObject

Appendix B: MockChainWallet

File hashes

© Coinspect 2024 3 / 69

Executive Summary

In October 2023, Flare engaged Coinspect to perform a source code review of FAsset
Bots, a suite comprised of off-chain services that handle key actors of the FAsset
Protocol.

The FAsset Offchain Bots are the Challenger, Liquidator, Agent, TimeKeeper,
SystemKeeper and User bots. These rely on several peripheral components and interact
with the FAsset Protocol smart contracts.

Solved Caution Advised Resolution Pending

High

5
High

0
High

0

Medium

7
Medium

0
Medium

0

Low

2
Low

0
Low

0

No Risk

2
No Risk

0
No Risk

0

Total

16
Total

0
Total

0

Coinspect identified five high-risk, seven medium-risk and two low-risk issues.
Overall, auditors identified:

Cases where agents could bypass challenges, allowing them to drain their
underlying balances.
A lack of event handling leading to unfair or skipped liquidations, reward claiming
omission, among others.

https://flare.network/
https://www.coinspect.com/

© Coinspect 2024 4 / 69

Architecture and design issues related to how events are listened and processed;
how reverts would affect the global execution and state.
Problems with private keys and database encryption handling.
Issues in the mempool dealing with transaction reordering and lack of retries.
Risks in the proofs and attestations system regarding the use of insecure defaults,
and faulty proof structure for payments.

During November 2023, Coinspect reviewed the fixes provided by the Flare Team for
the issues contained in this report. The status of each issue was updated accordingly
with the respective commits.

In December 2023, Coinspect reviewed the last set of fixes provided by the Flare
Team.

© Coinspect 2024 5 / 69

Summary of Findings

Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could improve
the long-term security posture of the project.

Id Title Risk

FASO-003 Agents can be unfairly liquidated by deprecating tokens High

FASO-006
Protocol might turn insolvent as agents in full liquidation

status are not liquidated High

FASO-007
Agents can drain the underlying's balance by spending

multiple inputs bypassing any challenge High

FASO-008 Malicious agents can bypass negative balance challenges High

FASO-009
[Inherited] Payments with more than 255 inputs in UTXO

chains are not supported High

FASO-001 Insecure handling of bot operator's private keys Medium

FASO-002
Reverts triggered by an event will skip remaining event

processing Medium

FASO-004
Liquidators fail to track vault collateral token updates and

miss unhealthy agents Medium

FASO-005 Insecure default blocks to wait for finalization Medium

FASO-010
Airdrop distributions won't be claimed for collateral pools

when the vault opts out Medium

FASO-011 Critical bot TXs won't be performed if stuck in the mempool Medium

© Coinspect 2024 6 / 69

FASO-012
Reverts during even processing result in corrupted

TrackedState Medium

FASO-013
Weak wallet encryption/decryption passwords are

supported Low

FASO-014
Multiple attempts may be required before successfully

creating a new Agent Low

FASO-015
Weak test coverage increases exposure to attacks and

adversarial scenarios None

FASO-016
Agents can steal underlying balance sending more than fifty

transactions None

© Coinspect 2024 7 / 69

Assessment and Scope

The audit started on October 2nd, 2023 and was conducted on the following commits:

1c8378f26744aed5ed3b96bb58dab8aa585d090d of the
https://gitlab.com/flarenetwork/fasset-bots repository.

567482c2f5f6b20f060fff7bab6245278145c28e of the
https://gitlab.com/flarenetwork/simple-wallet repository.

Scope and Reviewed Threats

Coinspect auditors focused on scenarios that could impair the FAsset-Bots'
performance and compromise the functioning of the FAsset protocol itself. The threats
and adversarial scenarios reviewed were related to the following topics and fields:

Processing target chain events and handling reorganizations when necessary.
Managing transaction submission, expiration, return value assessment, retries, and
resubmission.
Maintaining awareness of wallet's account nonces.
Estimating gas prices specific to the network.
Identifying race conditions between observed events and transaction execution.
Detecting gas waste attacks.
Assessing blockchain congestion scenarios.
Identifying vectors for bot denial of service attacks.

Overview

Overall, the code was easy to read, and was accompanied with documentation and
specifications. In addition, the testing suite is well implemented, encompassing a
comprehensive range of tests and scenarios. However, Coinspect identified room for
improvement when it comes to tests coverage, as several branches are not tested
which increases the likelihood of encountering bugs in production (FASO-015).

https://gitlab.com/flarenetwork/fasset-bots
https://gitlab.com/flarenetwork/simple-wallet

© Coinspect 2024 8 / 69

It is worth pointing out that side effects from the interactions with external sources, as
well as the impact of the whole economic system proposed by the FAsset protocol are
out of this project's scope (e.g., the impact of having FAsset accumulation on DEXes,
and FAsset availability for liquidations, among others). These scenarios require further
analysis to ensure the correct functioning of the protocol.

For the present engagement, Coinspect assumed that the State Connector and the
Attestation Client work correctly.

The project architecture allows operators to run separate bots by running each script.
This is achieved by the creation of isolated entities (actors) that are executed with
independent runners. All the bots but the Agent's rely on the TrackedState
implementation. This implementation is in charge of listening, processing and
returning events to the consumer bots. Coinspect reported that the TrackedState could
get its data corrupted in the event of an early revert when processing events, affecting
all the internal states that depend on the remaining elements of the loop (FASO-012).
The Agent bot has its own event listening mechanism, implemented directly into the
Agent's bot file.

Main Actors

Agent

The agent is in charge of performing all automated actions: processing mints and
redemptions, and managing collateral. He is responsible for updating liquidation
parameters, such as collateral prices and ratios, proving underlying addresses (if
required by the underlying chain), among other key actions. On top of the automated
bot actions, Agent Operators can interact with their agent instance by using CLI
commands. Coinspect discovered that the agent's creation relies on the failure of the
transaction simulation, as it is forced to loop over all token suffixes until an unused one
is found because agent operators have no flexibility to specify the initial index, leading
to FASO-014.

A single step of this bot is comprised by four key stages that handle:

Unprocessed events
Pending redemptions
Waiting and cleanups (related to time-locked actions)
Daily tasks (open redemptions and mints, reward claiming, among others)

© Coinspect 2024 9 / 69

The event listening mechanism relies on a three-step process to collect and process
events:

1. Listens to events since the registered block, up to the current block
2. Each event is processed in the main loop
3. Depending on the event type, specific actions are performed

Coinspect identified two issues related to the event listening and processing
mechanism:

1. The collateral swap event is not processed, which allows agents to get unfairly
liquidated if the process is not fulfilled on time (FASO-003)

2. As the event processing architecture is inside a try-catch logic, in face of a
revert, the remaining events will not be processed. This potentially corrupts the
Agent's bot database, leading to inconsistent states (FASO-002).

Affecting the daily tasks handling, Coinspect detected that airdrops distributions for
pools will not be claimed if the vault opted out. This is because the claiming process is
done sequentially, inside the same try-catch block (FASO-010).

Lastly, Coinspect identified that the top-up mechanism is not properly tested, and
strongly suggests adding tests for this critical functionality.

Challenger

This actor monitors all payments and redemptions where agents are involved. A
challenge is triggered with the FAsset smart contracts, if an agent misbehaves
regarding redemption payments, and minimum underlying balance. This bot should
work as synced as possible, as it performs time-sensitive operations. Its main
procedure consists in collecting events returned by TrackedState, filtering them by
type, finally executing the action specified by each event.

Coinspect identified that this actor does not handle UTXO based transactions properly:
it assumes that there is only one relevant input per transaction. This assumption led to
two different issues:

1. An agent spending two inputs, where the first has a low value, the system fails
to detect spendings from subsequent UTXOs. This allows a malicious agent to
drain its underlying account without being challenged (FASO-007).

2. An underflow when checking the agent's underlying balance can be triggered
with the same split UTXO mechanism as FASO-007. This leads to a negative
balance, voiding the challenge mechanism (FASO-008).

© Coinspect 2024 10 / 69

TimeKeeper

The heartbeat of the FAsset Protocol is in charge of submitting the last proven
underlying block number, timestamp and number of confirmations to the smart
contracts. The values are later consumed by sensitive parts of the protocol, such as
redemptions and minting deadlines.

SystemKeeper and Liquidator

These two actors work in a complimentary way. SystemKeeper is in charge of taking
agents in or out of liquidation state, at the right time (e.g., when undercollateralized or
challenged). This actor's main procedure consumes the events from TrackedState, and
pursues actions when the collateral price changes, or when an agent executes a
minting operation.

The Liquidator tracks down key agent operations that alter the collateral ratio,
checking if they are liquidatable. If the liquidation threshold is met, the bot calls the
AssetManager contract, triggering the agent's liquidation. In terms of event consuming,
it works the same way as the SystemKeeper. Coinspect reported that the liquidator bot
only targets agents that are liquidatable because of an unhealthy collateral ratio,
skipping any liquidation to those agents that were challenged and are in FULL
LIQUIDATION status (FASO-006). Also, the liquidator bot does not properly handle
collateral swaps, skipping the liquidation. This means that those agents that did not
swap their collateral will still be considered healthy by the calculations made with the
internal state (FASO-004).

User

Provides the base actions and interactions that users can perform with Agents, such as
reserving collateral, executing minting positions, and requesting for redemptions.
Users interact with this implementation via CLI Commands.

Peripheral Entities and Services

The suite has multiple services that provide key functionalities to each core actor, such
as: utilities, indexer helpers, attestation client helpers, a simple wallet, a tracked state,
among others.

© Coinspect 2024 11 / 69

Within the peripheral services, Coinspect identified that the BlockchainIndexerHelper
uses an insecure configuration for blocks finalization, as default - no config is provided
(FASO-005). Each type of transaction has its own proof structure, which is consumed by
the attestation services and proof verification systems. Coinspect detected that an
issue related to payment proofs, reported in a previous assessment, is still present
(FASO-009). With regards to awaiting for requests, Coinspect identified that parts of the
codebase have no timeouts, and wait for responses indefinitely. For instance, in
StateConnectorClientHelper in waitForRoundFinalization(), the iteration of the
while-loop is constrained by a sleep call, exiting the loop only when certain condition
is met, i.e., the round finalizes.

In terms on how the system interacts with the wallet to send transactions, Coinspect
noted that there is no retry or mempool-handling logic. This means that stuck
transactions cannot be bumped or dropped. Ultimately, the execution of those
transactions will halt with higher nonces (FASO-011).

Lastly, users create new accounts that are stored into their local database. The private
keys of those accounts are encrypted and then stored. However, the encryption
password, used both for creation and recovery, can be weak, having no policy
enforcement (FASO-013). In addition, the current project structure requires users to
provide their agent private key along with other sensitive information into the same
.env file (FASO-001).

© Coinspect 2024 12 / 69

Detailed Findings

FASO-003

Agents can be unfairly liquidated by
deprecating tokens

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

src/state/TrackedState.ts

src/state/TrackedAgentState.ts

Description

The Agent Bot omits the CollateralTypeDeprecated event. As a consequence the
vault collateral token might not be switched and, once it is no longer valid, the
Agent can be liquidated. Additionally, the Agent Bot will not be able to perform

© Coinspect 2024 13 / 69

collateral top-ups, as it will never find the new collateral token in context, created
when starting the bot.

Upon Bot startup, the context retrieves all the collateral types (active and
deprecated), to later store the address of each stablecoin:

src/config/create-asset-context.ts:

 const collaterals = await assetManager.getCollateralTypes();
 const stableCoins = await createStableCoins(collaterals);
 return {
 nativeChainInfo: botConfig.nativeChainInfo,
 chainInfo: chainConfig.chainInfo,
 blockchainIndexer: chainConfig.blockchainIndexerClient,
 wallet: chainConfig.wallet,
 attestationProvider: new
AttestationHelper(chainConfig.stateConnector,
chainConfig.blockchainIndexerClient, chainConfig.chainInfo.chainId),
 assetManager: assetManager,
 priceChangeEmitter: priceChangeEmitter,
 wNat: wNat,
 fAsset: await FAsset.at(await assetManager.fAsset()),
 collaterals: collaterals,
 stablecoins: stableCoins,
 addressUpdater: addressUpdater,
 };

Then, if a top-up transaction should be made the bot attempts to match the
current collateral token with the stablecoin, in the context created upon startup:

 async depositVaultCollateral(amountTokenWei: BNish) {
 const vaultCollateralTokenAddress = (await
this.getVaultCollateral()).token;
 const vaultCollateralToken =
requireNotNull(Object.values(this.context.stablecoins).find((token) =>
token.address === vaultCollateralTokenAddress));
 await vaultCollateralToken.approve(this.vaultAddress,
amountTokenWei, { from: this.ownerAddress });
 return await
this.agentVault.depositCollateral(vaultCollateralTokenAddress,
amountTokenWei, { from: this.ownerAddress });
 }

As there is no component that modifies the current collateral token when
listening CollateralTypeDeprecated:

1. The bot will make top-ups of the recently deprecated token, not altering its
collateral ratio in the contracts and draining the owner's wallet.

2. Any bot will be able to liquidate the unsuspecting agent if the collateral
token is not manually switched, as expired collateral tokens wont't count for
the CR calculation. When the switching deadline is reached, the Agent faces

© Coinspect 2024 14 / 69

a discrete jump in their collateral ratio as all the deprecated token balance is
dismissed:

// A simple way to force agents still holding expired collateral tokens
into liquidation is just to
// set fullCollateral for expired types to 0.
// This will also make all liquidation payments in the other collateral
type.
uint256 fullCollateral = CollateralTypes.isValid(collateral) ?
collateral.token.balanceOf(owner) : 0;

Recommendation

Add collateral deprecation handling.

Status

Fixed on commits 891b88965ea59cb24c02bfcf61442b8962800b20 and
3ead1e25171846605bd48c6ee9d1df8f069a02c1.

The agent's tracked state now handles the AgentCollateralTypeChanged event
triggered when the vault's collateral is changed.

© Coinspect 2024 15 / 69

FASO-006

Protocol might turn insolvent as agents in
full liquidation status are not liquidated

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

src/actors/Liquidator.ts

Description

The Liquidator does not handle the FULL_LIQUIDATION status of an agent, meaning
that no liquidation for those agents that misbehave will be triggered. As a
consequence, no agent will be liquidated. In the event of having a collateral price
drop, that position would start to build up debt harming the global protocol's
health.

A liquidation is triggered when a minting position is executed or when a price
epoch is finalized:

for (const event of events) {
 if (eventIs(event, this.state.context.priceChangeEmitter,
"PriceEpochFinalized")) {

© Coinspect 2024 16 / 69

 console.log(`Liquidator ${this.address} received event
'PriceEpochFinalized' with data ${formatArgs(event.args)}.`);
 logger.info(`Liquidator ${this.address} received event
'PriceEpochFinalized' with data ${formatArgs(event.args)}.`);
 await this.checkAllAgentsForLiquidation();
 } else if (eventIs(event, this.state.context.assetManager,
"MintingExecuted")) {
 console.log(`Liquidator ${this.address} received event
'PriceEpochFinalized' with data ${formatArgs(event.args)}.`);
 logger.info(`Liquidator ${this.address} received event
'MintingExecuted' with data ${formatArgs(event.args)}.`);
 await this.handleMintingExecuted(event.args);
 }
}

Then, the liquidation process checks that the current status is LIQUIDATION in order
to liquidate the agent:

if (newStatus === AgentStatus.LIQUIDATION) {
 const fBalance = await
this.state.context.fAsset.balanceOf(this.address);
 console.log(`Trying to liquidate agent ${agent.vaultAddress}`);
 await this.state.context.assetManager.liquidate(agent.vaultAddress,
fBalance, { from: this.address });
 logger.info(`Liquidator ${this.address} liquidated agent
${agent.vaultAddress}.`);
}

Because of this, a challenged agent that now has the FULL_LIQUIDATION status will
never be detected by the Liquidator. This leads to profits losses, potentially
driving the protocol into insolvency (assuming that no other external bots with a
correct implementation handle this condition).

Proof of Concept

The following test shows how an agent in FULL LIQUIDATION status is not
liquidated by the main steps of the Liquidator. It is checked that the liquidator
does not receive any vault collateral token or spends FAssets as no liquidation
was performed.

Run the script in the test-hardhat/integration/challenger.ts file.

Prerequisites:

Some imports have to be added:

import { sleep, toBN, toBNExp } from "../../src/utils/helpers";
import { artifacts, web3 } from "../../src/utils/web3";

© Coinspect 2024 17 / 69

import {createTestLiquidator} from "../test-utils/helpers";
const IERC20 = artifacts.require("IERC20");

Add the following addresses in the constructor (declaring them as global
strings):

 liquidatorAddress = accounts[7];
 minter2Address = accounts[8];

Script

it("Coinspect - Will not liquidate agents in full liquidation", async
() => {
 const challenger = await
createTestChallenger(challengerAddress, state);
 const liquidator = await
createTestLiquidator(liquidatorAddress, state);

const spyChlg = spy.on(challenger, "doublePaymentChallenge");
 // create test actors
 const agentBot = await
createTestAgentBotAndMakeAvailable(context, orm, ownerAddress);
 const vaultCollateralToken = await IERC20.at((await
agentBot.agent.getVaultCollateral()).token);

const minter = await createTestMinter(context, minterAddress, chain);
 const minter2 = await createTestMinter(context, minter2Address,
chain);

const redeemer = await createTestRedeemer(context, redeemerAddress);
 await challenger.runStep();

// create collateral reservation and perform minting
 await createCRAndPerformMintingAndRunSteps(minter, agentBot, 3,
orm, chain);

// Generate balance in funder minter
 await createCRAndPerformMintingAndRunSteps(minter2, agentBot,
3, orm, chain);

// transfer FAssets
 const fBalance = await
context.fAsset.balanceOf(minter.address);
 await context.fAsset.transfer(redeemer.address, fBalance, {
from: minter.address });
 // create redemption requests and perform redemption
 const [reqs] = await redeemer.requestRedemption(3);
 const rdReq = reqs[0];
 // run agent's steps until redemption process is finished
 for (let i = 0; ; i++) {
 await time.advanceBlock();
 chain.mine();
 await agentBot.runStep(orm.em);
 // check if redemption is done

© Coinspect 2024 18 / 69

 orm.em.clear();
 const redemption = await agentBot.findRedemption(orm.em,
rdReq.requestId);
 console.log(`Agent step ${i}, state =
${redemption.state}`);
 if (redemption.state === AgentRedemptionState.DONE) break;
 }
 // repeat the same payment (already confirmed)
 await performRedemptionPayment(agentBot.agent, rdReq);
 // run challenger's and agent's steps until agent's status is
FULL_LIQUIDATION
 for (let i = 0; ; i++) {
 await time.advanceBlock();
 chain.mine();
 await sleep(3000);
 await challenger.runStep();
 await agentBot.runStep(orm.em);
 const agentStatus = await getAgentStatus(agentBot);
 console.log(`Challenger step ${i}, agent status =
${AgentStatus[agentStatus]}`);
 if (agentStatus === AgentStatus.FULL_LIQUIDATION) break;
 }
 const agentStatus = await getAgentStatus(agentBot);
 assert.equal(agentStatus, AgentStatus.FULL_LIQUIDATION);
 expect(spyChlg).to.have.been.called.once;

// Try to liquidate agent in full liquidation
 // liquidator "buys" f-assets
 console.log("Transferring Fassets to liquidator...");
 const funderBalance = await
context.fAsset.balanceOf(minter2.address);
 await context.fAsset.transfer(liquidator.address,
funderBalance, { from: minter2.address });

// FAsset and collateral balance
 const fBalanceBefore = await
state.context.fAsset.balanceOf(liquidatorAddress);
 const cBalanceBefore = await
vaultCollateralToken.balanceOf(liquidatorAddress);

// As the only trigger is price changes, check if the liquidator would
liquidate the agent
 // mock price changes and run liquidation trigger
 console.log("Finalizing Price Epoch...");
 await context.ftsoManager.mockFinalizePriceEpoch();

console.log("Liquidating...");
 await liquidator.runStep();

const fBalanceAfter = await
state.context.fAsset.balanceOf(liquidatorAddress);
 const cBalanceAfter = await
vaultCollateralToken.balanceOf(liquidatorAddress);

// The balance is unchanged, meaning that the liquidator bot omitted
the liquidation of the agent
 expect(cBalanceAfter.eq(cBalanceBefore)).to.be.true;
 expect(fBalanceAfter.eq(fBalanceBefore)).to.be.true;
 });

© Coinspect 2024 19 / 69

Recommendation

Handle the full liquidation status in the Liquidator.

Status

Fixed on commit 460278a546f800ed622b2f4b94d41a1e31b29c03.

Liquidator bots now also trigger liquidations when hearing the
FullLiquidationStarted event.

© Coinspect 2024 20 / 69

FASO-007

Agents can drain the underlying's balance by
spending multiple inputs bypassing any
challenge

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

src/actors/Challenger.ts

Description

Agents can empty the underlying account by announcing a withdrawal transaction
that spends a small amount in the first UTXO, draining the balance in a second
input.

The Challenger Bot only considers the first matching input UTXO when processing
transactions:

checkForNegativeFreeBalance():

© Coinspect 2024 21 / 69

const spentAmount = transaction.inputs.find((input) => input[0] ===
agent.underlyingAddress)?.[1];

Then, the transactions array is built using the first matched UTXO's value and
hash:

transactions.push({ txHash: transaction.hash, spent: spentAmount });

This mechanism to build the transactions array allows Agents to craft
transactions spending multiple inputs, that will bypass the following check:

const totalSpent = sumBN(transactions, (tx) => tx.spent);
if (totalSpent.gt(agent.freeUnderlyingBalanceUBA)) {
 const transactionHashes = transactions.map((tx) => tx.txHash);
 this.runner.startThread((scope) =>
this.freeBalanceNegativeChallenge(scope, transactionHashes, agent));
}

A transaction with the following structure will bypass the negative balance check
and could effectively drain the accounts balance:

 const fistUTXOAmt = toBN(underlyingBalanceUBA).div(toBN(1000));
 const spentUTXOs: UTXO[] = [
 { value: fistUTXOAmt }, // UTXO 1
 { value: toBN(underlyingBalanceUBA).sub(fistUTXOAmt) }, // UTXO
2
];

Proof of Concept

The following test scenario shows how an agent is able to drain the underlying
account, without being challenged, because of freeBalanceNegativeChallenge. It
can be seen how after performing the balance decreasing transactions, the
Challenger Bot keeps detecting that the Agent is in NORMAL state which does not
trigger the challenge.

Test Setup

To make this proof-of-concept, Coinspect adapted the MockChainWallet's
implementation to allow transactions that spend multiple UTXOs belonging to the
same address.

Follow the instructions below to use this implementation:

© Coinspect 2024 22 / 69

1. Add the code in the Appendix A to src/underlying-
chain/interfaces/IBlockChainWallet.ts.

2. In src/mock/MockChain.ts comment the current MockChainWallet's
implementation and add the code in the Appendix B

3. In src/fasset-bots/IAssetBotContext.ts add the
IBlockChainWalletMultipleUTXOs into the wallet global:

wallet: IBlockChainWallet --------> wallet: IBlockChainWallet |
IBlockChainWalletMultipleUTXOs

4. Do the same as the previous step, but in src/fasset/Agent.ts:

 get wallet(): IBlockChainWallet {
 return this.context.wallet;
 }

// Replace for:
 get wallet(): IBlockChainWallet | IBlockChainWalletMultipleUTXOs {
 return this.context.wallet;
 }

Output

Tx Status: 0
Hash:
0x7cbd615090cee3e23141d704630ae4bd3e09bc9155bd21d281e020ee9cec1ef6
Reference:

INPUTS:
spender: - value: 10000000
Total Spent: 10000000

OUTPUTS:
recipient: UNDERLYING_ACCOUNT_96954 - value: 10000000
Total Received: 10000000

MINTING STARTED: Minting 69 started for
0xEA6aBEf9ea06253364Bb6cf53065dAFD2ca122FC.
Tx Status: 0
Hash:
0x8263644e7e11703c0ba80d5c3010a73571b68fae662215aa92db3907514036cb
Reference:
0x46425052664100010045

INPUTS:
spender: MINTER_UNDERLYING_ADDRESS - value: 22000000000
Total Spent: 22000000000

OUTPUTS:
recipient: UNDERLYING_ACCOUNT_96954 - value: 22000000000
Total Received: 22000000000

© Coinspect 2024 23 / 69

MINTING EXECUTED: Minting 69 executed for
0xEA6aBEf9ea06253364Bb6cf53065dAFD2ca122FC.
Error handling FTSO rewards for agent
0xEA6aBEf9ea06253364Bb6cf53065dAFD2ca122FC: Error: Cannot create
instance of IFtsoRewardManager; no code at address
0x00
Error handling airdrop distribution for agent
0xEA6aBEf9ea06253364Bb6cf53065dAFD2ca122FC: Error: Cannot create
instance of IDistributionToDelegators; no code at address
0x00

PAYING....
Tx Status: 0
Hash:
0x794253a89a4255d04dc500a4e91eceec45bb0827675fc406edf470ce513742d8
Reference:
0x46425052664100030049

INPUTS:
spender: UNDERLYING_ACCOUNT_96954 - value: 22000000
spender: UNDERLYING_ACCOUNT_96954 - value: 21978000000
Total Spent: 22000000000

OUTPUTS:
recipient: UNDERLYING_ADDRESS - value: 22000000000
Total Received: 22000000000

Detected Tx Inputs:
UNDERLYING_ACCOUNT_96954,22000000,UNDERLYING_ACCOUNT_96954,21978000000
Found Spent Amount: 22000000

Total Spent Calculated By Challenger: 22000000
Free Underlying Balance UBA: 1200000000

Detected Tx Inputs:
UNDERLYING_ACCOUNT_96954,22000000,UNDERLYING_ACCOUNT_96954,21978000000
Found Spent Amount: 22000000

Total Spent Calculated By Challenger: 22000000
Free Underlying Balance UBA: 1200000000

Challenger step 0, agent status = NORMAL
Challenger step 1, agent status = NORMAL

Script

 it("Coinspect - Will not challenge negative balance with multiple
UTXOs", async () => {
 const challenger = await
createTestChallenger(challengerAddress, state);
 // create test actors
 const agentBot = await
createTestAgentBotAndMakeAvailable(context, orm, ownerAddress);
 const minter = await createTestMinter(context, minterAddress,
chain);
 await createCRAndPerformMintingAndRunSteps(minter, agentBot, 2,
orm, chain);

© Coinspect 2024 24 / 69

 await challenger.runStep();
 const underlyingBalanceUBA = (await
agentBot.agent.getAgentInfo()).underlyingBalanceUBA;
 // announce and perform underlying withdrawal
 const underlyingWithdrawal = await
agentBot.agent.announceUnderlyingWithdrawal();

let spenderAddr = agentBot.agent.underlyingAddress;
 let agentUnderlyingAddr = underlyingAddress;

const fistUTXOAmt = toBN(underlyingBalanceUBA).div(toBN(1000));
 const spentUTXOs: UTXO[] = [
 { value: fistUTXOAmt }, // UTXO 1
 { value: toBN(underlyingBalanceUBA).sub(fistUTXOAmt) }, //
UTXO 2
];

// Using This UTXO would trigger the negative underlying free balance
challenge
 // const spentUTXOs: UTXO[] = [{ value:
toBN(underlyingBalanceUBA) }];

const spent: SpentReceivedObject = {
 [spenderAddr]: spentUTXOs,
 };

const received1: SpentReceivedObject = {
 [agentUnderlyingAddr]: [{ value: underlyingBalanceUBA }],
 };

// Perform payment with multiple UTXOs
 console.log("\nPAYING....");
 await (agentBot.agent.wallet as
IBlockChainWalletMultipleUTXOs).addMultiTransaction(spent, received1,
underlyingWithdrawal.paymentReference);

chain.mine(chain.finalizationBlocks + 1);
 // run challenger's steps until agent's status is
FULL_LIQUIDATION
 for (let i = 0; ; i++) {
 await time.advanceBlock();
 chain.mine();
 await sleep(3000);
 await challenger.runStep();
 const agentStatus = await getAgentStatus(agentBot);
 console.log(`Challenger step ${i}, agent status =
${AgentStatus[agentStatus]}`);
 if (agentStatus === AgentStatus.FULL_LIQUIDATION) break;
 }
 // send notification
 await agentBot.runStep(orm.em);
 // check status
 const agentStatus2 = await getAgentStatus(agentBot);
 assert.equal(agentStatus2, AgentStatus.FULL_LIQUIDATION);
 });

Recommendation

© Coinspect 2024 25 / 69

Handle transactions that spend multiple inputs.

Status

Fixed on commit 5128e6ca3a5e781c8a210d7e704bdd9fab803fb4.

The Challenger bot now performs negative balance calculations considering
transactions with multiple inputs and outputs.

© Coinspect 2024 26 / 69

FASO-008

Malicious agents can bypass negative balance
challenges

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

src/actors/Challenger.ts

Description

Malicious agents can bypass negative balance challenges by triggering an
underflow inside checkForNegativeFreeBalance. This is achieved by spending
multiple UTXOs, where the value of the first input spent is lower than the
redemption's.

After each redemption payment transaction, the free underlying balance is
checked to prevent it from being negative. In the event of being negative (current
balance < required underlying balance), the freeBalanceNegativeChallenge
should be made. However, because the checkForNegativeFreeBalance function
only uses the value for the first spent UTXO and then subtracts the redemption's
value, when the first UTXO's value is lower than the redemption's, an underflow is
triggered.

© Coinspect 2024 27 / 69

checkForNegativeFreeBalance():

const spentAmount = transaction.inputs.find((input) => input[0] ===
agent.underlyingAddress)?.[1];
/* istanbul ignore next */
if (spentAmount == null) continue;
if (this.isValidRedemptionReference(agent, transaction.reference)) {
 // eslint-disable-next-line @typescript-eslint/no-non-null-
assertion
 const { amount } =
this.activeRedemptions.get(transaction.reference)!;
 transactions.push({ txHash: transaction.hash, spent:
spentAmount.sub(amount) });

This scenario makes the spent item of the transactions array negative, which will
always be lower than the agent's freeUnderlyingBalanceUBA effectively bypassing
a potential challenge.

// initiate challenge if total spent is big enough
const totalSpent = sumBN(transactions, (tx) => tx.spent);
if (totalSpent.gt(agent.freeUnderlyingBalanceUBA)) {
 const transactionHashes = transactions.map((tx) => tx.txHash);
 this.runner.startThread((scope) =>
this.freeBalanceNegativeChallenge(scope, transactionHashes, agent));
}

Proof of Concept

The following test scenario shows how an agent avoids being challenged by
freeBalanceNegativeChallenge, by paying a redemption using two UTXOs, and the
value of the first one is smaller than the redemption's value. It can be seen that
the totalSpent amount calculated by the challenger bot is negative. The
Challenger misses the logic inaccuracy, not challenging the malicious agent.

Test Setup

In order to make this proof of concept, Coinspect adapted the MockChainWallet's
implementation to allow transactions that spend multiple UTXOs belonging to the
same address.

Follow the same instructions from FASO-007 to setup the environment.

Output

© Coinspect 2024 28 / 69

Tx Status: 0
Hash:
0x4d3361c9d2344917f8fc867b0791b84d5a5b415937c7645797f1dc1e5687b258
Reference:

INPUTS:
spender: - value: 10000000
Total Spent: 10000000

OUTPUTS:
recipient: UNDERLYING_ACCOUNT_50208 - value: 10000000
Total Received: 10000000

MINTING STARTED: Minting 69 started for
0xEA6aBEf9ea06253364Bb6cf53065dAFD2ca122FC.
Tx Status: 0
Hash:
0xf2ae0496de58049bbe0dd71aca0c7dd7cb9100dee2bf58fb0f4d43848109480b
Reference:
0x46425052664100010045

INPUTS:
spender: MINTER_UNDERLYING_ADDRESS - value: 33000000000
Total Spent: 33000000000

OUTPUTS:
recipient: UNDERLYING_ACCOUNT_50208 - value: 33000000000
Total Received: 33000000000

MINTING EXECUTED: Minting 69 executed for
0xEA6aBEf9ea06253364Bb6cf53065dAFD2ca122FC.
Error handling FTSO rewards for agent
0xEA6aBEf9ea06253364Bb6cf53065dAFD2ca122FC: Error: Cannot create
instance of IFtsoRewardManager; no code at address
0x00
Error handling airdrop distribution for agent
0xEA6aBEf9ea06253364Bb6cf53065dAFD2ca122FC: Error: Cannot create
instance of IDistributionToDelegators; no code at address
0x00

PAYING....
Tx Status: 0
Hash:
0x73cebe3e6105493c75ed9e6cbaa01d2192a76172df478b9e7c802d7dd647bf1e
Reference:
0x4642505266410002004a

INPUTS:
spender: UNDERLYING_ACCOUNT_50208 - value: 1
spender: UNDERLYING_ACCOUNT_50208 - value: 39600000000
Total Spent: 39600000001

OUTPUTS:
recipient: REDEEMER_UNDERLYING_ADDRESS - value: 39600000001
Total Received: 39600000001

Detected Tx Inputs:
UNDERLYING_ACCOUNT_50208,1,UNDERLYING_ACCOUNT_50208,39600000000
Found Spent Amount: 1

© Coinspect 2024 29 / 69

Total Spent Calculated By Challenger: -19999999999
Free Underlying Balance UBA: 1800000000

Detected Tx Inputs:
UNDERLYING_ACCOUNT_50208,1,UNDERLYING_ACCOUNT_50208,39600000000
Found Spent Amount: 1

Total Spent Calculated By Challenger: -19999999999
Free Underlying Balance UBA: 1800000000

Challenger step 0, agent status = NORMAL
Challenger step 1, agent status = NORMAL

Script

 it("Coinspect - Underflow upon redemption payment", async () => {
 const challenger = await
createTestChallenger(challengerAddress, state);
 const spyChlg = spy.on(challenger, "doublePaymentChallenge");
 // create test actors
 const agentBot = await
createTestAgentBotAndMakeAvailable(context, orm, ownerAddress);
 const minter = await createTestMinter(context, minterAddress,
chain);
 const redeemer = await createTestRedeemer(context,
redeemerAddress);
 await challenger.runStep();
 // create collateral reservation and perform minting
 await createCRAndPerformMintingAndRunSteps(minter, agentBot, 3,
orm, chain);
 // transfer FAssets
 const fBalance = await
context.fAsset.balanceOf(minter.address);
 await context.fAsset.transfer(redeemer.address, fBalance, {
from: minter.address });

// perform redemption
 const [reqs] = await redeemer.requestRedemption(2);
 const rdReq = reqs[0];

// make the redemption payment
 const paymentAmount = reqs[0].valueUBA.sub(reqs[0].feeUBA);

const spentUTXOs: UTXO[] = [
 { value: toBN(1) }, // UTXO 1
 { value: toBN(paymentAmount).mul(toBN(2)) }, // UTXO 2
];

let spenderAddr = agentBot.agent.underlyingAddress;
 const spent: SpentReceivedObject = {
 [spenderAddr]: spentUTXOs,
 };

const received1: SpentReceivedObject = {
 [reqs[0].paymentAddress]: [
 {
 value:

© Coinspect 2024 30 / 69

toBN(paymentAmount).mul(toBN(2)).add(toBN(1)),
 },
],
 };

// Perform payment with multiple UTXOs
 console.log("\nPAYING....");
 await (agentBot.agent.wallet as
IBlockChainWalletMultipleUTXOs).addMultiTransaction(spent, received1,
reqs[0].paymentReference);
 chain.mine(chain.finalizationBlocks + 1);

const agentStatus1 = await getAgentStatus(agentBot);
 assert.equal(agentStatus1, AgentStatus.NORMAL);

// run challenger's steps until agent's status is FULL_LIQUIDATION
 for (let i = 0; ; i++) {
 await time.advanceBlock();
 chain.mine();
 await sleep(3000);
 await challenger.runStep();
 const agentStatus = await getAgentStatus(agentBot);
 console.log(`Challenger step ${i}, agent status =
${AgentStatus[agentStatus]}`);
 if (agentStatus === AgentStatus.FULL_LIQUIDATION) break;
 }
 // send notification
 await agentBot.runStep(orm.em);
 const agentStatus2 = await getAgentStatus(agentBot);
 assert.equal(agentStatus2, AgentStatus.FULL_LIQUIDATION);
 expect(spyChlg).to.have.been.called.once;
 });

Recommendation

Prevent underflows when calculating the spent item and handle transactions that
spend multiple input UTXOs.

Status

Fixed on commit 5128e6ca3a5e781c8a210d7e704bdd9fab803fb4.

The Challenger bot now performs negative balance calculations considering
transactions with multiple inputs and outputs.

© Coinspect 2024 31 / 69

FASO-009

[Inherited] Payments with more than 255
inputs in UTXO chains are not supported

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

src/verification/attestation-types/t-00001-payment.ts

Description

Payments made in UTXO chains spending more than 255 inputs are not
supported. As a result, any attempt to encode or decode transactions with more
than 255 inputs or outputs will fail.

The payment type has the following request when it comes to UTXO indexes:

 {
 key: "inUtxo",
 size: UTXO_BYTES,
 type: "NumberLike",
 description: `
Index of the source address on UTXO chains. Always 0 on non-UTXO
chains.

© Coinspect 2024 32 / 69

`,
 }

Where UTXO_BYTES == 1.

Then, this size is used (as def.size) across the verification dir to encode and
decode data, for example:

 encodeRequest(request: ARBase): string {
 let definition =
this.getDefinitionForAttestationType(request.attestationType);
 if (!definition) {
 throw new AttestationRequestEncodeError(`Unsupported attestation
type id: ${request.attestationType}`);
 }
 let bytes = "0x";
 for (let def of [...REQUEST_BASE_DEFINITIONS,
...definition.request]) {
 const value = request[def.key as keyof ARBase];
 if (value === undefined) {
 throw new AttestationRequestEncodeError(`Missing key ${def.key}
in request`);
 }
 bytes += toUnprefixedBytes(value, def.type, def.size, def.key);
 }
 return bytes;
 }

This issue has been reported in previous reports of audits to other parts of the
FAsset ecosystem:

1. FAsset Smart Contracts (FAS-010: Payments on UTXO chains cannot be
verified under certain conditions) and

2. Attestation Client (ATC-09: Attacker can prevent Payment and Balance
Decreasing Attestations)

Additionally, if the Attestation Client addresses the ATC-09 by supporting more
than 255 inputs while maintaining UTXO_BYTES at 1 in the FAsset Bots project, this
could lead to discrepancies and potential encoding/decoding issues.

Recommendation

Increase the amount of UTXOs supported. Additionally coordinate with the other
Flare Teams to ensure that the Attestation Client and FAsset Smart Contracts
follow the same criteria.

© Coinspect 2024 33 / 69

Status

Fixed on commit 5867ee4b17452c17972608f946ca6b6836f262fe.

The state-connector was fixed an now considers UTXOs with more than 255
inputs.

© Coinspect 2024 34 / 69

FASO-001

Insecure handling of bot operator's private
keys

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Low

Description

The current project's structure does not fully protect bot runners credentials,
increasing the likelihood of disclosing sensitive data into the repository.

Users and bot operators are forced by the project's architecture to place all their
keys into the same .env file:

DB ENCRYPTION

WALLET_ENCRYPTION_PASSWORD=

NATIVE CHAIN

OWNER_ADDRESS=
OWNER_PRIVATE_KEY=

UNDERLYING CHAIN

© Coinspect 2024 35 / 69

OWNER_UNDERLYING_ADDRESS=
OWNER_UNDERLYING_PRIVATE_KEY=

RUN CONFIG PATH

RUN_CONFIG_PATH=

FLARE_API_PORTAL_KEY

FLARE_API_PORTAL_KEY=

INDEXER

INDEXER_API_KEY=

RPC API KEYS (optional)

#NATIVE_RPC_API_KEY=
#XRP_RPC_API_KEY=
#BTC_RPC_API_KEY=
#DOGE_RPC_API_KEY=

This pattern could result in compromised sensitive credentials if they are
accidentally pushed into a public repository.

Recommendation

Retrieve sensitive credentials from an external separate file. Additionally, enforce
file system permissions for the file/s containing the keys, adding checks that
prevent reading private keys from files that are too permissive.

Status

Fixed on commits 64c3032db6927602b489e4ee5ae661eaeaeb2408,
ed6fa67beac8ff783ab88b5ce1ed0de2192cec91,
62fc3116a3deecadadf0da39cb2a3df8abfaac38, and
28887b1022565565c487c0db1ca6a48635c0eb61.

A new implementation to handle secrets was added. Secrets are retrieved from a
secrets.json file and permissions are checked before reading its content.

© Coinspect 2024 36 / 69

FASO-002

Reverts triggered by an event will skip
remaining event processing

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Low

Location

src/actors/AgentBot.ts

Description

Reverts at some point of the main handleEvents() loop will prevent the Agent bot
from processing subsequent events, ignoring key actions and database updates
they might trigger.

The main loop listens to unhandled events, and then performs actions triggered by
each one:

async handleEvents(rootEm: EM): Promise<void> {
 await rootEm
 .transactional(async (em) => {
 const events = await this.readUnhandledEvents(em);
 // Note: only update db here, so that retrying on error
won't retry on-chain operations.

© Coinspect 2024 37 / 69

 for (const event of events) {

// ================================== EVENT HANDLING
==================================

}
 })
 .catch((error) => {
 console.error(`Error handling events for agent
${this.agent.vaultAddress}: ${error}`);
 logger.error(`Agent ${this.agent.vaultAddress} run into
error while handling events: ${error}`);
 });
}

Due to this design, if some error is encountered at any step of the event loop, it
will be caught by the catch branch, skipping any action triggered by the remaining
events. When a new bot step is run, the remaining unprocessed events of the
previous step won't be recovered.

Coinspect has not identified any way to crash the code handling events yet.
However, it is worth considering this could happen and improving the code to
handle this scenario would result in a more resilient code.

Proof of Concept

The following test shows how an Agent Bot does not process a set of events that
were enqueued after an event triggers an error. When a new step is run, those
unprocessed events are not taken into account anymore.

To run this test:

Place the script in test-hardhat/integration/agentBot.ts
For event name and hash logging, add the following loop inside
handleEvents():

for (const event of events) {
 console.log(event.event, event.transactionHash)
}

Add the following throw in the first line of the
checkAgentForCollateralRatiosAndTopUp() function:

 throw "Some Throw inside checkAgentForCollateralRatiosAndTopUp"

© Coinspect 2024 38 / 69

Output

Run Step 1
AgentAvailable
0x47636c9bdf21ab496d588032f417662cc9fdcf59170bd10d0fb836da99d7b95a
CollateralReserved
0x057addd2031056d731639d6246d115e7643bceb443ac45b5a8cd61446573481a
PriceEpochFinalized
0xe71dc696fa436a8414091060c1815b576ab738dbe3739febf7214133b8771349
CollateralReserved
0x79aff57a54194a2b9dc0790aef4b78bce1f7b27fcbcf2609d0abc7a4f8a30923
CollateralReserved
0xd5eef0ae4e35dc5c0d673dc48ac4757a69f3f21dc1f978bb2a2e172bef5e7767
CollateralReserved
0xf319d8cce2eb69661e5d1f396a1d6edbd44bf08758b2d2c8f430417b4f354dd9
CollateralReserved
0xbe110da05eb9be61dfa26e4caed8c767eb7169fbbd80be3ef1b75b0b720ae5ef
CollateralReserved
0x41aadea901e431a9240059869c1956e590602b6402968d1420b7f0ed2d549454
CollateralReserved
0xd328cbd311a9b78abb59a67b8e0e7321f72c537af57a4a516b81ff21000a0877
CollateralReserved
0xd00794a9c7c2c9b6dad90424d0d97a1b783da474bd3d95c29dc7c3ee6e90a8a1
CollateralReserved
0x6becb99d5519ff7adf2d93ffdc7f006f8d1a1852e4fefa985a0e648ab3ffac6b
MINTING STARTED: Minting 71 started for
0xEA6aBEf9ea06253364Bb6cf53065dAFD2ca122FC.
Error handling events for agent
0xEA6aBEf9ea06253364Bb6cf53065dAFD2ca122FC: Some Throw inside
checkAgentForCollateralRatiosAndTopUp

Run Step 2
CollateralReserved
0xe8358cb6ef10b72d6b705c3647ff5464222aaeadccb831ec6e5b67d9d74dfea5
MINTING STARTED: Minting 766 started for
0xEA6aBEf9ea06253364Bb6cf53065dAFD2ca122FC.

Script

it("COINSPECT - Throw at some point of handleEvents", async () => {
 console.log("\nRun Step 1");
 const crt2 = await
minter.reserveCollateral(agentBot.agent.vaultAddress, 2);
 await context.ftsoManager.mockFinalizePriceEpoch();
 await minter.reserveCollateral(agentBot.agent.vaultAddress, 2);
 await minter.reserveCollateral(agentBot.agent.vaultAddress, 2);
 await minter.reserveCollateral(agentBot.agent.vaultAddress, 2);
 await minter.reserveCollateral(agentBot.agent.vaultAddress, 2);
 await minter.reserveCollateral(agentBot.agent.vaultAddress, 2);
 await minter.reserveCollateral(agentBot.agent.vaultAddress, 2);
 await minter.reserveCollateral(agentBot.agent.vaultAddress, 2);
 await minter.reserveCollateral(agentBot.agent.vaultAddress, 2);
 await agentBot.runStep(orm.em);

// Advance one block as events are ordered increasingly

© Coinspect 2024 39 / 69

 await time.advanceBlock();
 chain.mine();

console.log("\nRun Step 2");
 const crt4 = await
minter.reserveCollateral(agentBot.agent.vaultAddress, 2);
 await agentBot.runStep(orm.em);
});

Recommendation

Create a retry mechanism that continues the event processing, after the one that
triggered the revert.

If recovery is not an option, stop the Agent's Bot execution when there's a revert
as next events could depend on corrupted state changes.

Status

On commits c1257574f2dbd5909eb9986697c39c150eeb9b03 and
4152ff248abdacbc5e94602c3d2d07b62a916af4:

A new event handling process including a retry logic for failed events was added.
This new architecture creates an internal queue of handled and unhandled events,
which is checked on the beginning of each bot's step, retrying the event handling
of the unhandled events. However, the unhandled event list always grows as it is
only cleaned up when a failed event gets successfully handled. This list will grow
indefinitely if filled with ever-reverting events potentially incurring in unexpected
and outstanding gas spendings (in case the retried event wastes gas each time).

Coinspect suggests including a maximum amount of retries for each unhandled
event, removing this event after reaching this threshold.

Fixed on commit fe74da8f1aefdb9250d623617e9f44d4448643aa.

A maximum amount of retries was added. When this threshold is reached, the
event is removed from the retry list.

© Coinspect 2024 40 / 69

FASO-004

Liquidators fail to track vault collateral token
updates and miss unhealthy agents

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Medium

Location

src/state/TrackedState.ts

src/state/TrackedAgentState.ts

Description

The agent's tracked state does not detect collateral switches. As a consequence, it
could consider that an agent is still healthy as collateral ratio calculations are
made with the deprecated information.

The TrackedAgentState uses the following expression to calculate liquidation
status transitions:

private possibleLiquidationTransitionForCollateral(collateral:
CollateralType, timestamp: BN): AgentStatus {
 const cr = this.collateralRatioBIPS(collateral);
 const settings = this.parent.settings;
 if (this.status === AgentStatus.NORMAL) {

© Coinspect 2024 41 / 69

 if (cr.lt(toBN(collateral.ccbMinCollateralRatioBIPS))) {
 return AgentStatus.LIQUIDATION;
 } else if (cr.lt(toBN(collateral.minCollateralRatioBIPS))) {
 return AgentStatus.CCB;
 }
 } else if (this.status === AgentStatus.CCB) {
 if (cr.gte(toBN(collateral.minCollateralRatioBIPS))) {
 return AgentStatus.NORMAL;
 } else if (cr.lt(toBN(collateral.ccbMinCollateralRatioBIPS)) ||
timestamp.gte(this.ccbStartTimestamp.add(toBN(settings.ccbTimeSeconds))
)) {
 return AgentStatus.LIQUIDATION;
 }
 } else if (this.status === AgentStatus.LIQUIDATION) {
 if (cr.gte(toBN(collateral.safetyMinCollateralRatioBIPS))) {
 return AgentStatus.NORMAL;
 }
 }
 return this.status;
}

Where the collateral ratio is calculated as it follows:

 collateralRatioBIPS(collateral: CollateralType): BN {
 const ratio =
this.collateralRatioForPriceBIPS(this.parent.prices, collateral);
 const ratioFromTrusted =
this.collateralRatioForPriceBIPS(this.parent.trustedPrices,
collateral);
 return maxBN(ratio, ratioFromTrusted);
 }

collateralBalance(collateral: CollateralType): BN {
 return Number(collateral.collateralClass) ===
CollateralClass.VAULT
 ?
this.totalVaultCollateralWei[this.agentSettings.vaultCollateralToken]
 : this.totalPoolCollateralNATWei;
 }

The vaultCollateralToken is fixed (specified when the bot starts) and does not
change in the TrackedState, if there is a collateral deprecation, with a subsequent
switch made by the owner through AssetManager. The FAsset protocol considers
that expired collaterals will not count for the calculation of the CR:

// A simple way to force agents still holding expired collateral tokens
into liquidation is just to
// set fullCollateral for expired types to 0.
// This will also make all liquidation payments in the other collateral
type.
uint256 fullCollateral = CollateralTypes.isValid(collateral) ?
collateral.token.balanceOf(owner) : 0;

© Coinspect 2024 42 / 69

As there is no mechanism to track the current vaultCollateralToken, a liquidator
bot will always consider that there is available collateral and won't trigger the
liquidation when the deprecated token is no longer valid.

Recommendation

Handle collateral switch event.

Status

Fixed on commit 891b88965ea59cb24c02bfcf61442b8962800b20.

The agent's tracked state now handles the AgentCollateralTypeChanged event
triggered when the vault's collateral is changed.

© Coinspect 2024 43 / 69

FASO-005

Insecure default blocks to wait for finalization

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Low

Location

src/underlying-chain/BlockchainIndexerHelper.ts

Description

When there is no finalization block config value, the code opts to use an insecure
default for some chains (e.g., Bitcoin):

const waitBlocks = maxBlocksToWaitForTx ??
Math.max(this.finalizationBlocks, 1);

The default amount of blocks this function will wait until an underlying transaction
is considered finalized is 1. For Bitcoin, the suggested amount of wait blocks to
consider finalization is 6. In other words, a bot consuming from Bitcoin as an
underlying chain using this default might conduct actions over a transaction in a
block that has reorganization risk.

© Coinspect 2024 44 / 69

Recommendation

Use a safe default finalization value.

Status

On commit 1a8032c241d163f5ade7034b19f7f3a3a69ec666 the default was removed:

const waitBlocks = maxBlocksToWaitForTx ?? this.finalizationBlocks;

Coinspect identified that the contextual finalizationBlocks variable can be
initialized with unsafe values (set directly in the agent's config file). Because the
function reaching this line might have maxBlocksToWaitForTx as undefined (it is an
optional parameter of the waitForUnderlyingTransactionFinalization() function),
unsafe finalization values can still be used. If this is expected behavior, add a
warning when unsafe configuration parameters are being used.

Fixed on commit a0ace4efa472be35c53a67e3e26504783f0bd93b.

The finalizationBlocks variable uses a constant value in the Attestation Client,
that varies depending on each chain.

© Coinspect 2024 45 / 69

FASO-010

Airdrop distributions won't be claimed for
collateral pools when the vault opts out

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Medium

Location

src/actors/AgentBot.ts

Description

Airdrop rewards for collateral pools can be potentially lost or unclaimed for long
periods of time in the event of opting out of the airdrop. An unsuspecting owner
might then schedule the agent's destruction, leaving the airdrop unclaimed.

The first call to claim the airdrop distribution makes it through the AgentVault. If
the owner decided to optOut of the distribution, only in his vault, the execution will
catch the revert, skipping the subsequent claim to the collateral pool:

try {
 // airdrop distribution rewards
 logger.info(`Agent ${this.agent.vaultAddress} started checking for
airdrop distribution.`);
 const IDistributionToDelegators =

© Coinspect 2024 46 / 69

artifacts.require("IDistributionToDelegators");
 const distributionToDelegators = await
IDistributionToDelegators.at(await
addressUpdater.getContractAddress("DistributionToDelegators"));

const { 1: endMonthVault } = await
distributionToDelegators.getClaimableMonths({ from:
this.agent.vaultAddress });
 const { 1: endMonthPool } = await
distributionToDelegators.getClaimableMonths({ from:
this.agent.collateralPool.address });
 logger.info(`Agent ${this.agent.vaultAddress} is claiming airdrop
distribution for vault ${this.agent.vaultAddress} for month
${endMonthVault}.`);
 await
this.agent.agentVault.claimAirdropDistribution(distributionToDelegators
.address, endMonthVault, this.agent.vaultAddress, {
 from: this.agent.ownerAddress,
 });
 logger.info(`Agent ${this.agent.vaultAddress} is claiming airdrop
distribution for pool ${this.agent.collateralPool.address} for
${endMonthPool}.`);
 await
this.agent.collateralPool.claimAirdropDistribution(distributionToDelega
tors.address, endMonthPool, { from: this.agent.ownerAddress });
} catch (error) {
 console.error(`Error handling airdrop distribution for agent
${this.agent.vaultAddress}: ${error}`);
 logger.error(`Agent ${this.agent.vaultAddress} run into error while
handling airdrop distribution: ${error}`);
}

The Agent owner can opt out of the airdrop distribution independently on each
entity (vault and pool). Therefore, the owner can keep the airdrop distributions
active only for the pool. The DistributionToDelegators contract checks upon
claiming that the receiver has not opted out:

function _checkOptOut(address _account) internal view {
 require(!optOut[_account], ERR_OPT_OUT);
}

This means that the simulation of first call attempting to claim the airdrop for the
Agent Vault (if opted out) will trigger an error, skipping the next claim.

Recommendation

Check that either the vault and pool have not opted out of the airdrop before
claiming.

© Coinspect 2024 47 / 69

Status

On commit 1c77aa839e5c251c5d907452018530da0cf58a61 the following logic was
implemented:

const claimableVault = await
distributionToDelegators.getClaimableAmountOf(this.agent.vaultAddress,
endMonthVault);
if (toBN(claimableVault).gtn(0)) {
 logger.info(`Agent ${this.agent.vaultAddress} is claiming airdrop
distribution for vault ${this.agent.vaultAddress} for month
${endMonthVault}.`);
 await
this.agent.agentVault.claimAirdropDistribution(distributionToDelegators
.address, endMonthVault, this.agent.vaultAddress, { from:
this.agent.ownerAddress });
}
const claimablePool = await
distributionToDelegators.getClaimableAmountOf(this.agent.collateralPool
.address, endMonthPool);
if (toBN(claimablePool).gtn(0)) {
 logger.info(`Agent ${this.agent.vaultAddress} is claiming airdrop
distribution for pool ${this.agent.collateralPool.address} for
${endMonthPool}.`);
 await
this.agent.collateralPool.claimAirdropDistribution(distributionToDelega
tors.address, endMonthPool, { from: this.agent.ownerAddress });
}

This structure only performs the claiming call if there are enough tokens to be
claimed. However, distributionToDelegators.getClaimableAmountOf() fails if the
claiming user decided to opt out:

function getClaimableAmountOf(address _account, uint256 _month)
external view override entitlementStarted
 returns(uint256 _amountWei)
{
 _checkOptOut(_account);
 _checkIsMonthClaimable(getMonthToExpireNext(), _month);
 (, _amountWei) = _getClaimableWei(_account, _month);
}

After an Agent decides to opt out from the airdrop distributions granted to the
Vault, a revert is triggered when trying to retrieve the claimable amounts. This
skips the claiming process for the Collateral Pool.

Fixed on commit 94c85a26a9018440ca08e469e1844dfd9fa76799.

Rewards and airdrop distributions are claimed independently, meaning that each
claim call has its own try-catch logic without interfering with other claiming
process in the event of failure.

© Coinspect 2024 48 / 69

FASO-011

Critical bot TXs won't be performed if stuck
in the mempool

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Low

Description

The wallet implementation does not handle the possibility that transactions get
stuck in the mempool. Further, in several parts of the codebase a transaction hash
is awaited to continue the execution. In the event of a gas price surge, a
transaction might get stuck in the mempool, disrupting the functioning of the
actors.

This lack of retry logic can be identified in the following cases, for example:

src/actors/Liquidator.ts:

const fBalance = await
this.state.context.fAsset.balanceOf(this.address);
await this.state.context.assetManager.liquidate(agent.vaultAddress,
fBalance, { from: this.address });

© Coinspect 2024 49 / 69

logger.info(`Liquidator ${this.address} liquidated agent
${agent.vaultAddress}.`);

src/actors/SystemKeeper.ts:

await
this.state.context.assetManager.startLiquidation(agent.vaultAddress, {
from: this.address });
logger.info(
 `SystemKeeper ${this.address} started liquidation for agent
${agent.vaultAddress}. Agent's status changed from ${
 AgentStatus[agent.status]
 } to ${AgentStatus[newStatus]}.`
);

src/actors/UserBot.ts:

const txHash = await minter.performMintingPayment(crt);
logger.info(
 `User ${requireEnv("USER_ADDRESS")} paid on underlying chain for
reservation ${
 crt.collateralReservationId
 } to agent's ${agentVault} with transaction ${txHash}.`
);

As the gas price is always estimated, bot operators have no control or flexibility
over this parameter. A sudden gas price surge will make any transaction stuck in
the mempool until the price lowers. Any other transaction sent after the stuck one
will not be executed, even if the gas price is met. This would violate the
correlative nonce rule (considering that the transaction with a lower nonce is still
in the mempool).

All bots perform time sensitive actions requiring celerity and proper control of
their execution queue.

Recommendation

Design a retry logic. It could be implemented via transactions replacement by
nonce when possible. Make sure that duplicates or other types of transactions -
susceptible to a challenge through this retry/replacement process - are note
created.

Status

© Coinspect 2024 50 / 69

Fixed on commits:

Simple Wallet: b309bf3bc0cb7f101137afdbd669408cdc95ead5,
335ddd7c954e4e9859ea88ebb287b6d2129e4b1b.
FAsset Bots Native: 6de1c3c312552fb638251ae0ae7007f0ad75df01,
e8e5c77095b112a8218e7b976428013741747be7.

The Flare Team added a retry logic for each chain's wallet using specific triggers
for each.

© Coinspect 2024 51 / 69

FASO-012

Reverts during even processing result in
corrupted TrackedState

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Low

Location

src/state/TrackedState.ts

Description

Several actors get the unhandled events from the TrackedStates main loop, if this
execution has a revert at some point, the execution will continue and will skip the
unprocessed events. This scenario might leave several internal variables outdated
that don't reflect the current state of the FAsset Smart Contract Protocol.

Skipping or altering the event processing could lead to corrupted states. As
different events might inter-depend on states (e.g., two different events that
update key variables used for collateral rate calculation), the consequences can be
critical.

All actors but the AgentBot get the events from the TrackedStates. This process
first listens events from several sources (via readUnhandledEvents) and, before

© Coinspect 2024 52 / 69

returning the collected events, the internal tracked states are updated through
registerStateEvents.

async readUnhandledEvents(): Promise<EvmEvent[]> {
 logger.info(`Tracked State started reading unhandled native events
FROM block ${this.lastEventBlockHandled}.`);
 // get all needed logs for state
 const nci = this.context.nativeChainInfo;
 const lastBlock = (await web3.eth.getBlockNumber()) -
nci.finalizationBlocks;
 const events: EvmEvent[] = [];
 for (let lastHandled = this.lastEventBlockHandled; lastHandled <
lastBlock; lastHandled += nci.readLogsChunkSize) {

/// Event listening logic

}
 // mark as handled
 this.lastEventBlockHandled = lastBlock;
 // run state events
 events.sort((a, b) => a.blockNumber - b.blockNumber);
 logger.info(`Tracked State finished reading unhandled native events
TO block ${this.lastEventBlockHandled}.`);
 await this.registerStateEvents(events);
 return events;
}

 async registerStateEvents(events: EvmEvent[]): Promise<void> {
 try {
 for (const event of events) {
 /// State updates according to each event

for (const collateral of this.collaterals.list) {
 const contract = await
tokenContract(collateral.token);
 if (eventIs(event, contract, "Transfer")) {
 logger.info(`Tracked State received event
'Transfer' with data ${formatArgs(event.args)}.`);

this.agents.get(event.args.from)?.withdrawVaultCollateral(contract.addr
ess, toBN(event.args.value));

this.agents.get(event.args.to)?.depositVaultCollateral(contract.address
, toBN(event.args.value));

this.agentsByPool.get(event.args.from)?.withdrawPoolCollateral(toBN(eve
nt.args.value));

this.agentsByPool.get(event.args.to)?.depositPoolCollateral(toBN(event.
args.value));
 }
 }
 }
 } catch (error) {
 console.error(`Error handling events for Tracked State:
${error}`);
 logger.error(`Tracked State run into error while handling

© Coinspect 2024 53 / 69

events: ${error}`);
 }
 }

If at some point of the main event loop in registerStateEvents a revert is
triggered, the remaining events will be skipped and the execution will finish in the
catch branch. Afterwards, the collected events are returned from
readUnhandledEvents.

It is worth noting that, at the moment, Coinspect did not find any way to trigger a
revert when processing events. However, this could happen if new code is added,
or a dependency/library is updated and an issue is introduced.

Coinspect advises bulletproofing this loop in order to obtain a more resilient
procedure.

Recommendation

Do not skip over remaining events when there is an exception in one event. If
many order-sensitive events must be processed atomically, revert the execution
and prevent consumers from using potentially corrupted states.

Status

Fixed on commit e4bad21cbbe330df0fcf99f29be9e9c38f427196.

Coinspect asked to the Flare Team about the re-initialization process as it discards
all previously stored states. The Flare Team responded that in case of data
corruption, users can effortlessly restore the data of previously created agents
using the getAgentInfo method. This process also allows users to gradually
rebuild the TrackedState from the latest block, for newly created agents.

© Coinspect 2024 54 / 69

FASO-013

Weak wallet encryption/decryption
passwords are supported

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Medium
Likelihood
Low

Location

src/underlying-chain/WalletKeys.ts

src/utils/encryption.ts

Description

When adding a new account to the database, an encryption password is required.
However, there are no complexity requirements for this password, allowing for
weak encryption passwords.

Furthermore, the code uses SHA256 to hash the password. SHA256 is not meant for
password protection and a PKDF algorithm such as argon2 or scrypt should be
used instead.

src/underlying-chain/WalletKeys.ts:

© Coinspect 2024 55 / 69

async addKey(address: string, privateKey: string): Promise<void> {
 if (await this.getKey(address)) return;
 // set cache
 this.privateKeyCache.set(address, privateKey);
 // persist
 const wa = new WalletAddress();
 wa.address = address;
 wa.encryptedPrivateKey = encryptText(this.password, privateKey);
 await this.em.persist(wa).flush();
}

src/utils/encryption.ts:

export function encryptText(password: string, text: string): string {
 const passwordHash = crypto.createHash("sha256").update(password,
"ascii").digest();
 const initVector = crypto.randomBytes(16);
 const cipher = crypto.createCipheriv("aes-256-gcm", passwordHash,
initVector);
 const encBuf = cipher.update(text, "utf-8");
 return Buffer.concat([initVector, encBuf]).toString("base64");
}

As there are no complexity checks, weak or reused passwords are allowed. In the
event of a database leak, adversaries could potentially brute-force the encryption
trying to get the account's private key.

Recommendation

Enforce a minimum password length. Also, Coinspect suggests that the password
be randomly generated.

Change the algorithm to scrypt or argon2.

Status

On commit 12905c51e761a6be59885ff4545dc4d8f21bd449:

The password complexity is now checked. However, the hashing algorithm on
src/utils/encryption.ts, is still sha256.

Fixed on commits 468baef6a3ea777cde8e17001ef0ef0a17a29f18 and
2b615cffb958a7a9a742291fc9472a8767af73e7. Secrets now can be generated
automatically and the hashing algorithm was changed for scrypt. /--

© Coinspect 2024 56 / 69

FASO-014

Multiple attempts may be required before
successfully creating a new Agent

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Medium

Location

src/fasset/Agent.ts

Description

When creating new agents, the default index value used to build the token name
is zero. This means that the creation process is forced to loop over every single
index, relying on the transaction's simulation revert to increase the index:

static async create(ctx: IAssetAgentBotContext, ownerAddress: string,
agentSettings: AgentSettings, index: number = 0): Promise<Agent> {
 const desiredErrorIncludes = "suffix already reserved";
 try {
 const response = await
ctx.assetManager.createAgentVault(web3DeepNormalize(agentSettings), {
from: ownerAddress });
 // more create logic
 } catch (error: any) {
 if (error instanceof Error &&

© Coinspect 2024 57 / 69

error.message.includes(desiredErrorIncludes)) {
 index++;
 agentSettings.poolTokenSuffix =
this.incrementPoolTokenSuffix(agentSettings.poolTokenSuffix, index);
 return Agent.create(ctx, ownerAddress, agentSettings,
index);
 } else {
 throw new Error(error);
 }
 }
}

This means that when creating new agents, those willing to run the Agent Bot
cannot opt to start looping over greater indexes to speed up this process. Also, in
the event of a simulation failure, the transaction would be sent, wasting gas.

Recommendation

Allow Agent operators to specify a suffix index to start its creation.

Status

Fixed on commit d3c6a717d4fe55725e5d8b80be167536ff9089b4.

The recursive structure triggered when a token index (name) was taken when
creating an agent was removed. Now, users are required to set the token index as
an input. In other words, if for some reason the creation fails (e.g. the token name
was already taken), users will need to set a new token index in their agent
creation settings config file.

© Coinspect 2024 58 / 69

FASO-015

Weak test coverage increases exposure to
attacks and adversarial scenarios

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

test/

test-hardhat/

Description

Several functions and branches are not tested. Keeping an exhaustive and
complete test suite reduces the likelihood of encountering bugs in production.

The Hardhat's coverage report shown that the coverage could be improved:

=============================== Coverage summary
===============================
Statements : 84.14% (2945/3500)
Branches : 73.12% (860/1176)
Functions : 84.03% (521/620)
Lines : 84.24% (2855/3389)

© Coinspect 2024 59 / 69

===
=========

Coinspect identified that some functionalities, for example Agent's top-ups are
not properly tested.

Recommendation

Increase the overall coverage to 95% or more.

Status

Fixed.

The Flare Team stated that an overall coverage of 97% is reached when running
both Hardhat and E2E tests.

© Coinspect 2024 60 / 69

FASO-016

Agents can steal underlying balance sending
more than fifty transactions

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Description

Only a set of 50 unprocessed transactions are taken into account to calculate the
negative underlying balance challenge. A malicious agent with high traffic of
operations can accumulate 50 redemptions, and pay them in a single block.

To exploit this, an agent must have an active withdrawal announcement, putting
the withdrawal transaction in the 51th place. The global value of this transaction
can be disguised by leveraging FASO-007:

 transactions.sort((a, b) => (a.spent.gt(b.spent) ? -1 :
a.spent.lt(b.spent) ? 1 : 0));
 // extract highest MAX_REPORT transactions
 transactions = transactions.slice(0, MAX_NEGATIVE_BALANCE_REPORT);
 // initiate challenge if total spent is big enough
 const totalSpent = sumBN(transactions, (tx) => tx.spent);

© Coinspect 2024 61 / 69

Where the constant is MAX_NEGATIVE_BALANCE_REPORT == 50.

Coinspect was not able to exploit this vector, and concluded that this is because
the fees generated by the 50 transactions exceed the lowest redemption's value
(a draining tx would be caught by ordering unprocessed transactions by value).
However, this path could become exploitable if a parameter that impacts on the
underlying balance generation is changed in the future.

Recommendation

Be aware of this scenario when tuning or changing a parameter that affects the
underlying balance generation/accumulation.

Status

Acknowledged.

The Flare Team stated:

The limit of 50 is due to gas limit in the fasset contract
freeBalanceNegativeChallenge, so we cannot fix it. Anyway, all
redemption transactions must eventually be reported (because otherwise
the agent loses redemption collateral after 1 day), so the draining can
be only temporary.

© Coinspect 2024 62 / 69

Disclaimer

The information presented in this document is provided “as is” and without warranty.
Security Audits are a “point in time” analysis, and as such, it's possible that something
in scope may have changed since the tasks reflected in this report were executed. This
report shouldn't be considered a perfect representation of the risks threatening the
analyzed systems and/or applications in scope.

© Coinspect 2024 63 / 69

Appendix

Appendix A: IBlockChainWalletMultipleUTXOs,
UTXO and SpentReceivedObject

export type UTXO = {
 value: NumberLike;
 // ... Add any other properties you want, like txid, vout, etc.
};

export type SpentReceivedObject = {
 [address: string]: UTXO[];
};

export interface IBlockChainWalletMultipleUTXOs {
 // Create a transaction with a single source and target address.
 // Amount is the amount received by target and extra fee / gas can be
added to it to obtain the value spent from sourceAddress
 // (the added amount can be limited by maxFee).
 // Returns new transaction hash.
 addTransaction(
 sourceAddress: string,
 targetAddress: string,
 amount: NumberLike,
 reference: string | null,
 options?: TransactionOptionsWithFee,
 awaitForTransaction?: boolean
): Promise<string>;

// Add a generic transaction from a set of source addresses to a set of
target addresses.
 // Total source amount may be bigger (but not smaller!) than total
target amount, the rest (or part of it) can be used as gas/fee (not all
need to be used).
 // This variant is typically used on utxo chains.
 // Returns new transaction hash.
 addMultiTransaction(spent: SpentReceivedObject, received:
SpentReceivedObject, reference: string | null): Promise<string>;

// Creates a new account and returns the address.
 // Private key is kept in the wallet.
 createAccount(): Promise<string>;

// Add existing account.
 // Private key is kept in the wallet.
 addExistingAccount(address: string, privateKey: string):
Promise<string>;

© Coinspect 2024 64 / 69

// Return the balance of an address on the chain. If the address does not
exist, returns 0.
 getBalance(address: string): Promise<BN>;

// Return the current or estimated transaction fee on the chain.
 getTransactionFee(): Promise<BN>;
}

Appendix B: MockChainWallet

// UTXO implementation
export class MockChainWallet implements IBlockChainWalletMultipleUTXOs {
 constructor(
 public chain: MockChain,
) { }

async getBalance(address: string): Promise<BN> {
 return this.chain.balances[address] ?? BN_ZERO;
 }

async getTransactionFee(): Promise<BN> {
 return this.chain.requiredFee;
 }

addExistingAccount(): Promise<string> {
 throw new Error("Method not implemented.");
 }

async addTransaction(from: string, to: string, value: BNish, reference:
string | null, options?: MockTransactionOptionsWithFee): Promise<string> {
 const transaction = this.createTransaction(from, to, value,
reference, options);
 this.chain.addTransaction(transaction);
 return transaction.hash;
 }

async addMultiTransaction(spent: SpentReceivedObject, received:
SpentReceivedObject, reference: string | null, options?:
MockTransactionOptions): Promise<string> {
 const transaction = this.createMultiTransaction(spent, received,
reference, options);
 this.chain.addTransaction(transaction);
 return transaction.hash;
 }

createTransaction(from: string, to: string, value: BNish, reference: string
| null, options?: MockTransactionOptionsWithFee): MockChainTransaction {
 options ??= {};
 value = toBN(value);
 const maxFee = this.calculateMaxFee(options);
 if (maxFee.lt(this.chain.requiredFee)) {
 // mark transaction failed if too little gas/fee is added (like

© Coinspect 2024 65 / 69

EVM blockchains)
 options = { ...options, status: TX_FAILED };
 }
 const success = options.status == null || options.status ===
TX_SUCCESS;
 const spent = success ? value.add(maxFee) : maxFee;
 const received = success ? value : BN_ZERO;

const spentObj: SpentReceivedObject = { [from]: [{ value: spent }] };
 const receivedObj: SpentReceivedObject = { [to]: [{ value: received
}] };

return this.createMultiTransaction(spentObj, receivedObj, reference,
options);
 }

createMultiTransaction(spent_: SpentReceivedObject, received_:
SpentReceivedObject, reference: string | null, options?:
MockTransactionOptions): MockChainTransaction {

const inputs: TxInputOutput[] = Object.entries(spent_).flatMap(([address,
utxos]): TxInputOutput[] => {
 return utxos.map(utxo => [address, toBN(utxo.value)]);
 });

const outputs: TxInputOutput[] =
Object.entries(received_).flatMap(([address, utxos]): TxInputOutput[] => {
 return utxos.map(utxo => [address, toBN(utxo.value)]);
 });

const totalSpent = inputs.reduce((a, [_, x]) => a.add(x), BN_ZERO);
 const totalReceived = outputs.reduce((a, [_, x]) => a.add(x),
BN_ZERO);

const status = options?.status ?? TX_SUCCESS;

if (!totalSpent.gte(totalReceived)) fail("mockTransaction: received more
than spent");
 if (!totalSpent.gte(totalReceived.add(this.chain.requiredFee)))
fail("mockTransaction: not enough fee");

const hash = this.chain.createTransactionHash(inputs, outputs, reference);

console.log(`Tx Status: ${status}`)
 console.log(`Hash: ${hash}`)
 console.log(`Reference: ${reference}`)

console.log(`\nINPUTS:`)
 for (let input of inputs) {
 console.log(`spender: ${input[0]} - value: ${input[1]}`)
 }
 console.log(`Total Spent: ${totalSpent}`)

console.log(`\nOUTPUTS:`)
 for (let output of outputs) {
 console.log(`recipient: ${output[0]} - value: ${output[1]}`)
 }
 console.log(`Total Received: ${totalReceived}`)

console.log("\n");

© Coinspect 2024 66 / 69

 return { hash, inputs, outputs, reference, status };
 }

async createAccount(): Promise<string> {
 const accountId = Math.floor(Math.random() * 100000) + 1;
 return `UNDERLYING_ACCOUNT_${accountId}`;
 }

private calculateMaxFee(options: TransactionOptionsWithFee) {
 if (options.maxFee != null) {
 return toBN(options.maxFee);
 } else if (options.gasLimit != null) {
 return toBN(options.gasLimit).mul(toBN(options.gasPrice ??
this.chain.estimatedGasPrice));
 } else {
 return toBN(this.chain.requiredFee);
 }
 }
}

File hashes

FAsset Bot Directory

a2ce8069ffcc4191040b978e58dc4a544930c7e74e584b69d480ebe23cf61562 ./src/bot-api/agent/agentServer.ts
8de6562e26e7a50ba978f1eecfc2e90efa26687ca31ff9ca75ab416da90aa78d ./src/bot-api/agent/main.ts
10f6caa45450ea641b846969b46a2c07f7a22e526dfd7fe3b6cec67f5051900c ./src/bot-api/agent/auth/auth-
header-api-key.strategy.ts
f40d61972228c4542b00d8b27450a32ca698c0d6ac8998567a2b121f07787403 ./src/bot-
api/agent/auth/auth.module.ts
85677dbe82510d71b66963a59408545ac7aee6c76f49b860cc8e858aa41862de ./src/bot-
api/agent/controllers/agent.controller.ts
ecc5d029add27cfcb3aaef6ca6fe8fc1d2dfd570347c94b87fadfc70b1b45096 ./src/bot-
api/agent/controllers/pool.controller.ts
131e52784dbba1d6c543bae4584e90292c360d294709e762b5d17994d5507053 ./src/bot-
api/agent/controllers/underlying.controller.ts
7280b73de5489c3192d2e2a46f7df376e64740924c18b9ebe1dedfeb5588a8ee ./src/bot-
api/agent/controllers/vault.controller.ts
d3718977db4aa99eff2a56665bf559e39c5f4c95a2c06fa66a719c8a36d52be3 ./src/bot-api/agent/agent.module.ts
aea93084be440a53d5409df8ac1d1f7578f3f1c08579e6e1135f31916007ce96 ./src/bot-
api/agent/services/agent.service.ts
588b6434abbb2cc70cbd54ff9c05a903d2f6979c5a819d92cca4cba3ecbdc181 ./src/bot-api/common/ApiResponse.ts
4b96c008142d69f39f3f41deb3479770e9d0b6eee9959c6c8e4de590507f2abd ./src/bot-
api/common/AgentResponse.ts
942a5214e3b6ce38d16cc8cc8c722e86f40c7ef2e04c5b3227bc982e0f6a71c8 ./src/config/create-asset-
context.ts
136052b5d1ba7123fd48c09586d4d47007689b53a114633681c072b5cc4a68cf ./src/config/json-loader.ts
85162db04dff20615d4c031937477f71f39efd2c46ea71541a964d4c9abd72ae ./src/config/config-files.ts
1f68b6984c80a87738a8dd59ce14ca23079266e00fed4fd9c90e36e9e00707d4 ./src/config/contracts.ts
33e7dbe4d333d0f93fe49469bf5686349ad389480122bd4106b409fd23f03f4e ./src/config/orm.ts
7d4c1198f89592d05a0c9965072d5b20418e2a347e6b3d86a825534b1a352f8f ./src/config/orm-types.ts
b15a30b6209179a94d6975bfb03034defa8402559a9e1cb1a736cec16f8b157d ./src/config/BotConfig.ts
0400e8bbef59b3ea146ac71f5d8fdb84135b10423e44518fa5efa0fac43ab8d0 ./src/utils/helpers.ts
1dbbd7ea4aa379d09d0f580c317ce21f5c2cdddc6edb2380487bacb000298a5c ./src/utils/web3helpers.ts
8f77a986d0683ebb5684e6c8f0ca64b148eda063f63c0e3a9721694467d6ce35 ./src/utils/web3normalize.ts

© Coinspect 2024 67 / 69

d68fe29bb1780d42fb7ed325bc8497d59dc39fb0837f74ced94d2292da6a064e ./src/utils/web3.ts
2470b7dd8679291afafea3ee9ec3704544e0a9c82b985d42444324feec83f57a ./src/utils/logger.ts
744ce88b115d54699c60c4531b161383ca4ccb39493468f5634c9baa560b91ce ./src/utils/formatting.ts
683f2a83ab1daae5a57e668cb4714b39e034abc5897892f33d1570feedf2c14b ./src/utils/Notifier.ts
3a76aa1cf1e0cbda04930a484f0850084e872b79c9b8599206d7e9beaa3c0876 ./src/utils/printlog.ts
0486c0e6a6e8de1726121a0e8419d4dc27dbe74a85f74afc80d559e0d7a90bd4 ./src/utils/MerkleTree.ts
1be1ea1da8e92720fa90fcf97258883493566e430d6e191c0c203179fc2beb6c ./src/utils/events/ScopedRunner.ts
2c16bf611417e4383bf139c190ce48a5134d579368e6292663ae89878450656b
./src/utils/events/Web3EventDecoder.ts
fff95bf0c355bc2feef31c6ab97d89e80b75ecaeadad3ca3a85a04b09ec6103f ./src/utils/events/common.ts
9fc1f962d8931cfa73685f2481aa0e9603614ef0abe2d99ad8304c0c96fd55d3 ./src/utils/events/ScopedEvents.ts
a41988a70431ef775fb3cb5136c6c2bde80829a3f0356811c0ec498c6f9640f7
./src/utils/events/Web3ContractEventDecoder.ts
5b2ff9b68ab3e91b813b4940c568e5535cb2ffdc1662cf40a872fba5518cdfc9 ./src/utils/events/truffle.ts
2785b7feb016df55c1b9d5432d41641a877290c66ab85a54db0e15a0b37bbac8 ./src/utils/encryption.ts
1488116b8e872bd482f25e1521efa6e954b36e384130711d40c64eaee34506bf ./src/utils/mini-truffle-
contracts/cancelable-promises.ts
7bf6c94ab82d2d6f741fdab374ee4aa2aff526d723fb56eaca1fdd9441f90ff5 ./src/utils/mini-truffle-
contracts/artifacts.ts
7bb5e5d46371be84155d4b4d7d3da079d7534a6c12bd6b76fb3d87df727ec24b ./src/utils/mini-truffle-
contracts/contracts.ts
878b4eb1b9268eb77e2d8e2aa9451841fa9140aab2a529302baca48e9d568dd5 ./src/utils/mini-truffle-
contracts/types.ts
7474ba6f497979b994cc29b016b845a77209816d385d97957d5c79d68dba4dfb ./src/utils/mini-truffle-
contracts/finalization.ts
6b671abdae04c8114e4866e648203524f5ceb2ca58d13758b705d403bbdc3e54 ./src/utils/mini-truffle-
contracts/methods.ts
ec268e6ba8a2cedc70f1c16c245568305a9b9e79264f57ac2858ed841517c827 ./src/utils/fasset-helpers.ts
1a7f8b30b86ebba2708b2ce6c41d8e9417556c9e77bf6f5e1ddaf3ebdd521524
./src/utils/StaticAttestationDefinitionStore.ts
f1d841ebf4b4c5b8b01fa949f5bfb8e5ee11a5a738da08e67d85ce23ff6d74dc ./src/cli/apiKey.ts
200b249d05173ceaceb235e20d802529f9cacf0b8b0c104be3287ee069b9973f ./src/cli/fakePriceReader.ts
5a36565ea0020be28ad9820ffeaf86b436dfa3d9d2705597204b3c9070bd2c29 ./src/cli/agent.ts
a4ce28c947e699cec5e05d06491ad1a95795205578736bfbf73b63195f3c03b0 ./src/cli/testGovernance.ts
0096fd7e5c8641ffcea2ce62661f62a8912e31689dae162f1bce175d9d7e5ca1 ./src/cli/user.ts
1a48cacf431a4e07856e2946e3877a83cc7934e179e80f24f4aa1107916bf3cf ./src/state/Prices.ts
d130458ac826aeb56ab6daafddd5a600a4cc7913b14244e8c4ab34dd00a967c5 ./src/state/CollateralPrice.ts
154ea56cf54d5e6468a63f7d9aeb407cd4df2e3a71b5100bd3dd076124052882 ./src/state/TokenPrice.ts
d8b08273aa08f20d8344a4a049adc0624a065d863b883ff5442fd494d6a36574 ./src/state/TrackedState.ts
b3ac6d2193d19b3582aa0e037b7ba2798a44647606a9fdcbcf1504b15c5d718f ./src/state/TrackedAgentState.ts
881b9f62a06bd098a6579de3c60ae9c752357f137f0e6bf61f711812d5bc17e9
./src/state/CollateralIndexedList.ts
8e0fca82650f853b9381888c0838d6c657931d8ba272cbd1d16f0e3f40963d83 ./src/mikro-orm.config.ts
3a5a924d95e1a8c50576130c351be2a94d673acef36d65b88be416b6c7504074
./src/verification/generated/attestation-types-enum.ts
3195b89ac0f38583fd09113034bcdcd462d5a8486b74d1d44e8ca7207498f91e
./src/verification/generated/attestation-request-types.ts
5f9cc7d8d4e66eb2b1308d790d623e66608dcdd1df37b349166aa7d156ee0e52
./src/verification/generated/attestation-random-utils.ts
164c015865c7828f61da1200b633076cb54d9219d218b0f757ff5c30f11c6213
./src/verification/generated/attestation-hash-types.ts
769ece6cb9187be7b3fea437ac1fac6b7ec8c2e7af119bd25402e3047dcfef42
./src/verification/sources/sources.ts
c9c69dbeae8fd9dc8a87574903c440eb80db9704c7db465f34fb5c3605371611 ./src/verification/attestation-
types/t-00004-referenced-payment-nonexistence.ts
b5d99e2b7818385ec2b43ae31bbbf19dba9fce65776843d4a814e51d08ba0aa0 ./src/verification/attestation-
types/attestation-types.ts
b6fb74dd19630bbc8d7457034dd88e8e98991bc50908fb56010f9a3523e483e0 ./src/verification/attestation-
types/attestation-types-helpers.ts
078c772c21f3e0ba1e9f79f8738ce5ca55d581a61d866dc8b59efb298eb18817 ./src/verification/attestation-
types/t-00002-balance-decreasing-transaction.ts
cb2665f21baf160ff6e98623448ca073687eb852755ec0d11ce17a554845d3d0 ./src/verification/attestation-
types/attestation-types-utils.ts
7fba82cd1c2b02a099fb77abd9f13d52c209fd96f11dc72d1971e4639fd214cd ./src/verification/attestation-
types/t-00003-confirmed-block-height-exists.ts
7211c1edc051f0c023c8eca866372b5c6337d6dd630423561b335b4c2e2ce4be ./src/verification/attestation-
types/AttestationDefinitionStore.ts
a7a33eb11430c482901b67eb461cdaf0ca59b5271daa7011f49c9a78593f7fc3 ./src/verification/attestation-
types/t-00001-payment.ts

© Coinspect 2024 68 / 69

38f18be41552c2019940e70b47c0949d2183af84905f144a43ca1a93a26826b1 ./src/verification/attestation-
types/verifier-configs.ts
f895a891da8a1c5603e8fce7ce6d6eb359e514390bd4db683325d906f34dec39 ./src/underlying-
chain/AttestationHelper.ts
e241423dfa07197298f6fa665e0aaa486a5b875655db57b3571386fc9144f2f0 ./src/underlying-
chain/StateConnectorClientHelper.ts
99d85eda14370656acd6ddba65b0f27795eeafba64e844b9aca223d66d3cacd0 ./src/underlying-
chain/BlockchainWalletHelper.ts
cbf44276079dd9f5f0d2c579250886bd3e03975b79db035fe7ea9e34b7277819 ./src/underlying-
chain/BlockchainIndexerHelper.ts
f1e1ffbb196a6270db7d6e16a81a08995947fcc93e806ba0e4173d8bd16946de ./src/underlying-
chain/WalletKeys.ts
13d71c683328b8087c9ddb1a54e6431a1f54ccd7c923fec15003ccc9c5b9c881 ./src/underlying-
chain/interfaces/IBlockChain.ts
f774b66c872846dbbd783310e318253754304e1b0f1d5bbc31eec833d55f5b8d ./src/underlying-
chain/interfaces/IStateConnectorClient.ts
79b735a082ea732e26277232abd033b17b845df701d79747113aef0e70342277 ./src/underlying-
chain/interfaces/IBlockChainWallet.ts
dbfd4094d921650db4965ae79145be3fe145b6f19d117e9c3ff2645f2c49d3b2 ./src/fasset/PaymentReference.ts
adc0611588b93ef4f544c6f974d438a2a8f7e4b9334086d4c919f07867e335dc ./src/fasset/Agent.ts
71ffd7c9ac7f26d2e02e925988c0cd8f18bcc2af5c8d9c5c4a17670ea7a927e8 ./src/fasset/AssetManagerTypes.ts
848d31006d3c21901a8554a071081ee04b763ca274bc0781135991b8a6d80ba5 ./src/fasset/ChainInfo.ts
9a2e8636acecff77af2c6fa3a695f89cdb02eb9a9c37b54e2131e50c1c88606d
./src/fasset/LiquidationStrategyImpl.ts
5749414f11a2b8dc84369375c6949a01d14f85f5707007c3711bf656befbab13 ./src/fasset/Conversions.ts
ab9adabf7c0c4f28e5e1db85b2cde0a2e8987fda0944c3d50167ee41798dd568 ./src/fasset/CollateralData.ts
723d4fcf2a8b91f9517f9881ce82c6ae4e8054dca433474468fcfa3cc62fe9e8 ./src/actors/TimeKeeper.ts
12c170debe05f620820e0cac5e5f9038aec786f6ed18646f9f9fd7eb57fe9182 ./src/actors/ActorBaseRunner.ts
9edfb5a94072e9975c3050e912b3f27457a46e88855da2235768ea9fce0e9844 ./src/actors/Challenger.ts
7e8a60bfc307c4d7927a1a9dded65ae643fa5a1d9e6228314a260286a31c1fae ./src/actors/Liquidator.ts
c2a5b99b0c0b99309f0b1fab2f76652a2d1745fa5ea4933686404ce6475a8c6b ./src/actors/UserBot.ts
33453461e1808f7b447ae7b829897abaedb95de539fe61c53ae197505585630d ./src/actors/AgentBot.ts
6a5ba019e5dcda6aa2b41e8dc500f0950579623f785b7a665ddac6a5d4da4536 ./src/actors/AgentBotRunner.ts
4be30bcc9f528c15cd61a01eba594c51353816f83d22a21dab05ced1a22ef003 ./src/actors/AgentBotCliCommands.ts
2e047c43b7c2aca9ea6218fbf92b2601f6364169c14983022c0d6a9c98a0e553 ./src/actors/SystemKeeper.ts
a85ad26f8d2330fe3838d65443bcecfa75987a79ea31b92e7f1a93e094aa8fdf ./src/run/run-agent.ts
0ccda74534ba3b41b19f29bd0903b901fcdd120c746c29d25598f300b89780c4 ./src/run/run-systemKeeper.ts
1ef916f32bbf43a0c3dd90d94d6c87b145fac3564b04ccf1df59e62ea4ede65f ./src/run/run-challenger.ts
a6a70cb80b225853a7238047be1fca10a476050930575e421ca7f833128b7af5 ./src/run/run-liquidator.ts
894d320b26d1092c78d15f924fd14e2f6d5db6869e9316dbee7881293335ff7f ./src/run/run-timekeeper.ts
63901e319fe2ec848d9ca327c62255ee5052c77382cde638cb9af6bf79508f05 ./src/entities/wallet.ts
8635e4c1fc4d84c7a860ee7c0db3d47849b8ca7914b47f0be8a6a2aefa3a9a78 ./src/entities/agent.ts
e5f9f2468211795a7fb288abaf38576355ed4dcc8129a1041248b77196259c17 ./src/entities/common.ts
9358838f1669908a0062ca202dc09890c0e68cf2c598a3a71c83941923a1b3ba ./src/fasset-bots/ActorBase.ts
d297391c68319e5eb367777c2f861cf56b7366f0402c206678d28db3f9ff9b95 ./src/fasset-
bots/IAssetBotContext.ts

Simple-Wallet

6fed8cc2a47d2ecbd000a27052a1ea09297b16f4b875d191c63cab4180eb8c96 ./src/@types/bitcore-lib-
ltc/index.d.ts
af69589d856b0f8bff3ae3ad9f49a16b8886c55fddad3cf17d59ca5837377f6d ./src/@types/wallet-address-
validator/index.d.ts
e0bee33166a46941c2ddd9173471e5f3da6a3ec0d6774f26de614b771c44c789 ./src/@types/bitcore-lib-
doge/index.d.ts
1748226e6745f01deab8ffd3e6f610e52300f3592e707a18820af04df7f9680e ./src/chain-
clients/AlgoWalletImplementation.ts
b754aa168b015d26a78c9aeddb639bbb33a51597b6e33c60bda1cd2c05370c31 ./src/chain-
clients/BtcWalletImplementation.ts
1262097499a0d9828c9ef96048b31c727369fc1e7c00704f69a291397f465fa7 ./src/chain-clients/UtxoCore.ts
f75acb0b8e14b713f2cc08d2d6e13cdcd2172956c22506f814cf066c26d91968 ./src/chain-
clients/LtcWalletImplementation.ts
48d81e9f3ff21f1d4629f8b5344b3a14bc964eb6c9ab14ce041b64e196c4b79d ./src/chain-

© Coinspect 2024 69 / 69

clients/DogeWalletImplementation.ts
9f818dea0da211b6b29d5563e5d68e28cbc4abc7c8462921f5e7b3111a684fdd ./src/chain-
clients/XrpWalletImplementation.ts
45869c74842aa9582c4f901e36cdf12241fef85973416529e65487834e209beb ./src/utils/utils.ts
ea5c43eec6d9553465c4a961943f244ee15f53f78db6b68aa280e4a000fd0fc6 ./src/utils/constants.ts
57d7723b863cc58201803a34a73f08cba3dccd8f46570d4f55455f591c25115b ./src/types.ts
941df5c2735e9eac216660a2d95d3ae3b31833371dd75294b746dd8e8c564a57 ./src/index.ts
ca18af22cae610b8e16b7d7f296a1f8095236156a85744c02e2a86e7a56fc285
./src/interfaces/WriteWalletRpcInterface.ts

