StakingP?2
Off-chain services

Security Review

cQinspect

cOinspect

Staking P2 Off-chain Services

Source Code Review

Version: v240220 Prepared for: Flare November 2023

Off-chain Services Review

Executive Summary

Summary of Findings
Solved issues & recommendations
Assessment and Scope
Integration With the Mirroring Protocol
Architecture Overview
Trust Assumptions
External Calls Handling

Interactions With External Services

Changes introduced by new commit

© Coinspect 2024

1/37

Fix Review
Detailed Findings
Disclaimer

File hashes

© Coinspect 2024 2/37

Executive Summary

Services implementing the Flare Staking Phase 2 Mirroring Protocol. The objective
of the project was to evaluate the security of the scripts responsible for voting and
mirroring staking positions. These operate with other peripheral services such as
Indexers, resulting in a system in charge of linking the state of the P-Chain with the C-

Chain's.

The following issues were identified during the initial assessment:

v A X

Solved Caution Advised Resolution Pending
High High High
1 0 0
Medium Medium Medium
2 0 0]
Low Low Low
1 0 0]
No Risk No Risk No Risk
3 0 0
Total Total Total

7 0 0

PS0S-001, a high-risk issue, highlights how the current project's environment setup is
prone to leak user's credentials. The first medium-risk issue, PS0S-602, depicts how
adversaries can force a mirroring service to stop working by mirroring the stake
themselves. Additionally, PS0S-603 outlines a lack of user segregation in the database.
Lastly, the remaining low-risk refers to the fact that reset epochs are not properly

© Coinspect 2024 3/37

https://flare.network/
https://www.coinspect.com/

handled and will never be voted again by the service, thereby requiring manual voting
and root calculation, reflected in PS0S-604.

It should be noted that the Flare team addressed PS0S-002 in the most recent commit,
prior to Coinspect reporting the issue.

© Coinspect 2024 4/37

Summary of Findings

Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could improve
the long-term security posture of the project.

Id Title Risk
PS0S-001 Insecure handling of voters private keys High
PS0OS-002 Adversary can force mirroring services to stop working Medium
PS0OS-003 Lack of database privilege segregation Medium

The voting service will never include transactions from

Pe05-004 reset epochs

PSOS-005 Script will attempt to mirror epochs twice None
PSOS-006 Key contextual time-based variables could be constant None
PS0OS-007 Service API disclosing internal error information None

© Coinspect 2024 5/37

Assessment and Scope

The source code review of the Flare Staking Phase 2 Mirroring Services project
started on September 11th, 2023, and was conducted on the staking-clients branch

of the git repository located at hitps:/oithub.com/flare-foundation/flare-p-chain-
indexer. as of commit ee0632512bd70d12e2b2738d19321a23e8b5e394.

Overall, the code was easy to read and understand. However, Coinspect suggests
including more documentation and specifications regarding its use cases considering
the strong trust assumptions of the system. Coinspect also recommends adding more
integration testing cases to include adversarial scenarios or situations where a
condition is changed directly on the C-Chain (smart contracts). For example, tests
considering root resets, threshold changes, etc.

The mirroring services are comprised by several jobs, each one in charge of a specific
key task required by the Mirroring Protocol. Particularly, the services implemented
cover the following tasks: Uptime Tracking and Voting, Root Voting, Stake Mirroring,
and Transaction Indexing.

Integration With the Mirroring Protocol

The reviewed off-chain services work as a nexus between the transactions made on
the P-Chain and the corresponding smart contracts on the C-Chain. As a result, users
are able to stake or delegate into a P-Chain node, and receive rewards on the C-Chain.
This is achieved by the Transaction Mirroring Protocol comprised by actions made off-
chain and on-chain. Trusted entities called voters receive a set of indexed transactions
for each epoch, calculate their merkle root and vote for that root on the C-Chain's
smart contract. This process is responsibility of the Root Voting service.

When the voting threshold is reached, a root is committed and anyone can mirror a
proved transaction into that chain, hence, a Mirroring service handling those
transactions is also included into the off-chain suite. In addition, voters are in charge of
tracking the node uptime by emitting an event on the same C-Chain contract, carried
out by the Uptime Voting script. Those actions require the collection of each
transaction and node status from the P-Chain, which is performed by the Uptime and
Indexer services.

© Coinspect 2024 6/37

https://github.com/flare-foundation/flare-p-chain-indexer

Architecture Overview

The architecture is based on goroutines that run each job concurrently, relying on an
external transaction database that is populated by the indexing service. It is flexible,
allowing users to choose between which jobs they will run. For instance, a non-voter
user is able to run the indexer and the mirroring service, calling the smart contract
subsidizing the mirroring of stakes. Likewise, voters will also run the voting services
providing merkle roots to the voting contract and submit validators uptime records.
Coinspect identified that the current project's architecture requires users to store their
credentials on the same configuration file along with other parameters, and most
importantly does not protect that file against accidental commits or pushes to the
version control system, PS0S-001.

Each service relies on the database's state which is populated by the indexer service.
Moreover, because all other services work in an epoch-based time frame, a critical
aspect is updating internal indexes (used in for loops) and database registries properly.
In the event of having a delay or disarrangement between the current block, epoch or
internal indexes, each service would likely stop working as intended. For example, as
each service loops over each epoch in a sequential way, if the Governance resets a root,
voters will require to manually calculate and vote for the new root of that epoch, PS0S-
004. Also, Coinspect identified that the database can be altered from different sources,
such as API calls. In the event of the API key compromise, adversaries would be able to
alter information in this database, and therefore affect voting results.

Trust Assumptions

Regarding voters and their incentives to act in an honest manner, the system assumes
that they are all trusted entities that will not become rogue or collude. In fact, this
assumption combined with the insecure private key handling could lead to a denial of
service if a supply chain attack is used to compromise the nodes and/or several
credentials are leaked. For instance, with a voting threshold of 6, and 5 keys
compromised the system would become non operational.

Censorship and Collusion

The incentive program for voters to act honestly is unclear. In other words, there are
no punishments or incentives that prevent voting collusion or censorship against a
specific set of transactions or accounts. In short, in the event of having compromised
keys or voters turning adversarial, the system does not implement preventive actions,

© Coinspect 2024 7137

protecting the mirroring protocol with corrective countermeasures such as merkle root
resets and revoke stakings made directly on the C-Chain contracts relying on the
Protocol's Governance.

External Calls Handling

Interactions with foreign data sources such as contracts and nodes are made through
two different clients: Avalanche Indexer Client and Avalanche RPC Client. They both
require an APl Key in order to establish connection, facing the same issue as the
private keys mentioned on the Architecture Overview section in the present
Assessment. Calls made to contracts on the C-Chain have no specific gas estimation
rules, relying on the estimation of the node.

Native Balance Checks

Currently, there are no checks to ensure that a user running the off-chain services has
enough native balance to cover the gas fees. Running out of native tokens will trigger a
revert on those jobs performing calls to the contracts, until the account is funded.
Coinspect suggests adding monitoring services into Prometheus that track each user's
balance, which trigger an alert when the account's balance falls below a threshold.
Additionally, a balance check could be added when each service is started.

Smart Contract reverted transactions handling

In terms on how the services handle revert conditions, Coinspect identified that this
field could be improved. Specifically, several critical updates such as next epoch
indexes of the mirroring services are made only if the call to the contract on the C-
Chain was successful. In other words, a revert on the smart contract triggers an early
return on every single service which should consider when updating internal indexes,
for example.

Regarding the voting service, this condition is handled by the call made to the
shouldVote function, ensuring to submit a vote only for the current epoch if the root has
not been committed or the voter has not voted. However, Coinspect identified that
reversals are not properly handled in the mirroring service, where adversaries can
front-run stake mirroring transactions to stop each service potentially leaving all
mirroring services non-operational, PS0S-002.

© Coinspect 2024 8/37

Interactions With External Services

During this engagement, Coinspect did not review how the validator uptime data is
consumed once the respective event
(PChainStakeMirrorValidatorUptimeVoteSubmitted) is emitted. As the design of the
uptime voting system found in the smart contracts is lightweight, it only emits the
event provided by its caller. Services consuming its data should handle adversarial
scenarios such as double voting, voting for fake nodeIds, among others.

A similar situation relates to nodes providing P-chain and uptime data. The current
engagement has not addressed potential issues from nodes set up incorrectly or with
weak security protections.

© Coinspect 2024 9/37

Changes introduced by new commit

On September 20th, 2023, a new commit
(c38fa4913cfd529a764ced791e111e225217¢7f, tag audit-09-20) was provided by Flare's
team. These code modifications introduce several changes and bug fixes which were
reviewed during the last two days of the engagement.

e Fixed PS0S-001: Private keys are now retrieved from an external file.

¢ Added new queries to the database allowing to fetch a list of stakers available at a
specific time.

¢ Added epoch cronjob support.

¢ Split jobs into two files, main and stub. The main job file performs core actions
whereas stubs provide each job with peripheral actions (such as utility functions).
Several functions where moved from the utils file to each stub.

¢ Fixed PS0S-002 (independently discovered by the Flare team): Expected reverts
when mirroring transactions are now handled.

¢ Added two new API endpoints allowing querying mirroring information.

¢ Added new functions to the staking endpoint.

e Added several unit tests to each service. Coinspect suggests more scenarios are
tested, for instance, evaluate how the scripts behave if a condition or parameter is
modified directly on the C-Chain contracts.

© Coinspect 2024 10/37

Fix Review

On October 2nd, 2023 Flare provided an updated repository commit with fixes for all
the issues reported. Additionally, they made fixes and improvements to the source
code.

¢ Improvement: Added the configuration option
delete_old_uptimes_epoch_threshold to remove uptime info for epochs already
voted for (commit c9b1b3cc89cd4fal6a9600626579940c042a1742). This feature calls
on each loop a cleanup function that deletes from the database registries of old
uptime epochs to prevent it from growing too large. Only data older than 5 epochs
can be deleted.

e Fix: Voting and mirroring is only performed for input with index O. Previously, voting
and mirroring was done for all input addresses with the same weight (total staked
amount) which could potentially lead to rewarding a staker multiple times (commit
9c23c230a8decBb505b1¢41539b2dc1899989792).

e Improvement: gasLimit was estimated automatically and it was tight (by library we
use). Since the gas used depends on the order of execution after estimation if two
or more votes were submitted at about the same time, then and they happen to use
the same estimate, the one that puts in the block later fails due to all gas used
(note the limit is tight). Now there is option to set gasLimit through env variable
(commit aB8a4e2c98b3a5c8277a74bcb7ad4bedfd1364a873).

© Coinspect 2024 11/37

Detailed Findings

PS0OS-001

|
Insecure handling of voters private keys

Status Ri§k
Solved High

Impact
High
R?solution IL-iIIEgiI:OOd
Fixed
Location

config.toml

Description

The current project's structure does not fully protect voter's and operator's private
keys or endpoints, increasing the likelihood of disclosing sensitive data as the
default configuration file is already pushed into the main branch.

Each voter has two different ways, as per the project's documentation, to create
configuration files:

© Coinspect 2024 12/37

Config file can be specified using the command line parameter ~--
config®, e.g., ' ./services --config config.local.toml . The default
config file name is “config.toml".

A sample config file includes not only sensitive information (such as the voter's
private key) but also the parameters used to customize how the script works (for
example, refresh timeouts, chain ids, start indexes, etc.). This structure is error
prone as users are forced to mix on the same file configuration parameters
required to run the script along with sensitive credentials.

Additionally, voters cloning this repository could accidentally push configuration
files with their private key because the default config file is named after
config.toml (when there is no config.LOCAL.toml). The current exceptions of
.gitignore don't protect users against this kind of mistakes, potentially exposing
their private key when pushing.

It is worth mentioning that adding a *.toml exception won't protect voters as
config.toml was previously committed and pushed into the main branch, commit
hash a71ded3c6c068a817db229e389ab77166c9¢c139e on February 16th, 2023.

Recommendation

Don't use the same file to store sensitive data and configuration parameters.
Additionally, improve the private key and endpoint (API key) handling to reduce
the risk of expos.

Status

Fixed in commit 7a18b8be487663abBc70e632497122cced24ef60.
Private keys are now retrieved from an external file.
However, Coinspect observed that:

¢ Minimum file system permissions are not enforced for the file containing the
private key. It is strongly suggested to add checks in the service that prevent
reading private keys from files that have overly permissive permissions.

e RPC API keys could also be exposed in the configuration file, which is risky as
detailed in PS0S-003.

e Private key management is still a relevant threat as mentioned in the
assessment. Continuous improvements can be made to support safer key
storage devices and key rotation policies.

© Coinspect 2024 13/37

PS0OS-002

|
Adversary can force mirroring services to

stop working

Status Risk
Solved Medium
A 4
Impact
Low
R?solution IHIIEeglil'r\]OOd
Fixed
Location

indexer/cronjob/mirror.go

Description

An adversary can indefinitely halt off-chain clients from mirroring transactions,
potentially impacting the calculation of rewards.

When a client attempts to mirror a stake that has already been mirrored, the
transaction will be reverted. This will trigger an error in mirror.go:mirrorTx(),
abruptly terminating the mirroring script. As a consequence, the NextDBIndex
epoch does not get updated.

Subsequently, when the next cycle begins, the mirroring script will attempt to
mirror that same previously reverted stake, as NextDBIndex remained unchanged.
This causes the script to be trapped in a perpetual error loop.

© Coinspect 2024 14/37

To illustrate, here's a brief breakdown of the logic that leads to the mirroring
scripts getting stuck indefinitely:

for epoch := epochRange.start; epoch <= epochRange.end; epoch++ {
// Skip updating if indexer is behind
if c.indexerBehind(&idxState, epoch) {
logger.Debug("indexer is behind, skipping mirror")
return nil

¥

logger.Debug("mirroring epoch %d", epoch)
if err := c.mirrorEpoch(epoch); err != nil {
//This error is thrown when the mirroring transaction
reverts,
//preventing the script from finishing iterating the
for loop

return err

}
}

logger.Debug("successfully mirrored epochs %d-%d", epochRange.start,
epochRange.end)

//NextDBIndex will not be updated due to early finish
//Therefore, in the next iteration, the script will attempt
//to mirror the same stake that caused the revert

if err := c.updateJobState(epochRange.end); err != nil {
return err

¥

Note that:

¢ When working in parallel with multiple mirroring clients, this issue hinders all
but one from effectively mirroring. An adversary can exploit this weakness to
force the remaining operative client into an error loop.

e Any third-party with a valid _merkleProof and _stakeData can still manually
mirror the transaction on demand.

Proof of Concept

The following scenario uses two different mirroring services and prints the EVM
revert that is triggered when the second service tries to mirror. Then, it is shown
how this service does not update its index trying to mirror the transactions on the
same epoch were the revert was initially triggered.

To run this test, add the following scripts into indexer/cronjob/voting_test.go.

Run:

© Coinspect 2024

15/37

go test ./indexer/cronjob/ -run
"TestCoinspect_VotingWithTwoMirroringServices" -v -count=1

Output

=== RUN TestCoinspect_VotingWithTwoMirroringServices
=== RUN TestCoinspect_VotingWithTwoMirroringServices/Run_indexer_1
=== RUN TestCoinspect_VotingWithTwoMirroringServices/Run_indexer_2

TestCoinspect_VotingWithTwoMirroringServices/Run_voting_clients_1_and_2
=== RUN
TestCoinspect_VotingWithTwoMirroringServices/Reverts_if_two_mirroring_j
obs_mirror_the_same_Tx

Waiting 2 secs...

Runnning mCronjobT
mirroring epoch: @
mirroring epoch: 1
mirroring epoch: 2

Waiting 2 secs...

Runnning mCronjob2

mirroring epoch: ©

Failed on Epoch: ©

mirroringContract.MirrorStake: Error: VM Exception while processing
transaction: reverted with reason string 'transaction already mirrored'’

Waiting 2 secs...

Runnning mCronjobT
<nil>

Runnning mCronjob2

mirroring epoch: ©

Failed on Epoch: ©

mirroringContract.MirrorStake: Error: VM Exception while processing
transaction: reverted with reason string 'transaction already mirrored'’
--- PASS: TestCoinspect_VotingWithTwoMirroringServices (10.95s)

--- PASS:
TestCoinspect_VotingWithTwoMirroringServices/Run_indexer_1 (0.10s)

--- PASS:
TestCoinspect_VotingWithTwoMirroringServices/Run_indexer_2 (0.12s)

--- PASS:
TestCoinspect_VotingWithTwoMirroringServices/Run_voting_clients_1_and_2
(0.75s)

--- PASS:
TestCoinspect_VotingWithTwoMirroringServices/Reverts_if_two_mirroring_j
obs_mirror_the_same_Tx (8.46s)

PASS
ok flare-indexer/indexer/cronjob 11.259s

© Coinspect 2024 16/37

Script

func TestCoinspect_VotingWithTwoMirroringServices(t *testing.T) {
now := time.Unix(1675349340, 0) // 2023-02-02 14:49:00 UTC
vCronjob1, vCronjob2, mCronjob1, mCronjob2, indexer1, indexer2,
err := createTestVotingClientsTwoMirrorings(now)
require.NoError(t, err)

t.Run("Run indexer 1", func(t *testing.T) {
err := indexer1.IndexBatch()
require.NoError(t, err)

1)

t.Run("Run indexer 2", func(t *testing.T) {
err := indexer2.IndexBatch()
require.NoError(t, err)

1)

t.Run("Run voting clients 1 and 2", func(t *testing.T) {
vCronjob1.time.SetNow(now)
vCronjob2.time.SetNow(now)
for i := 0; i < 10; i++ {
err := vCronjob1.Call()
require.NoError(t, err)
err = vCronjob2.Call()
require.NoError(t, err)
vCronjob1.time.AdvanceNow (30 * time.Second)
vCronjob2.time.AdvanceNow (30 * time.Second)

})

t.Run("Reverts if two mirroring jobs mirror the same Tx", func(t
*testing.T)
mCronjob1.time.SetNow(now)
mCronjob1.time.AdvanceNow (10 * 30 * time.Second)

mCronjob2.time.SetNow(now)
mCronjob2.time.AdvanceNow (10 * 30 * time.Second)

fmt.Println("\nWaiting 2 secs...")
time.Sleep(2 * time.Second)
fmt.Println("\nRunnning mCronjob1")
err11 := mCronjob1.Call()
require.NoError(t, erri1)

fmt.Println("\nWaiting 2 secs...")
time.Sleep(2 * time.Second)
fmt.Println("\nRunnning mCronjob2")
err2 := mCronjob2.Call()
fmt.Println(err2)

fmt.Println("\nWaiting 2 secs...")
time.Sleep(2 * time.Second)

fmt.Println("\nRunnning mCronjob1")
err12 := mCronjob1.Call()
fmt.Println(erri12)
require.NoError(t, erri12)

time.Sleep(2 * time.Second)

© Coinspect 2024 17/37

fmt.Println("\nRunnning mCronjob2")
err22 := mCronjob2.Call()
fmt.Println(err22)

Where createTestVotingClientsTwoMirrorings() is:

func createTestVotingClientsTwoMirrorings(epochStart time.Time)
(*votingCronjob, *votingCronjob, *mirrorCrondob, *mirrorCrondJob,
*shared.ChainIndexerBase, *shared.ChainIndexerBase, error) {

ctx1, err :=
context.BuildTestContext(votingCronjobTestConfig(epochStart,
"“flare_indexer_indexer", privateKey1))

if err !'= nil {

return nil, nil, nil, nil, nil, nil, err

}
cronjob1, err := NewVotingCronjob(ctx1)
if err !'= nil {
return nil, nil, nil, nil, nil, nil, err
}
ctx2, err :=

context.BuildTestContext(votingCronjobTestConfig(epochStart,
"flare_indexer_indexer_2", privateKey2))
if err !'= nil {
return nil, nil, nil, nil, nil, nil, err

}
cronjob2, err := NewVotingCronjob(ctx2)
if err !'= nil {

return nil, nil, nil, nil, nil, nil, err

}
mirror1, err := NewMirrorCronjob(ctx1)
if err !'= nil {
return nil, nil, nil, nil, nil, nil, err
}
mirror2, err := NewMirrorCronjob(ctx2)
if err !'= nil {
return nil, nil, nil, nil, nil, nil, err
}
indexer1 := &shared.ChainIndexerBase{
StateName: pchain.StateName,
IndexerName: "P-chain Blocks Test",
Client: testClient,
DB: ctx1.DB(),
Config: ctx1.Config().PChainIndexer,

BatchIndexer: pchain.NewPChainBatchIndexer (
ctx1, testClient, testRPCClient,

pchain.NewPChainDataTransformer(transformPChainTx),

)I

}

indexer2 := &shared.ChainIndexerBase{
StateName: pchain.StateName,

© Coinspect 2024 18/37

IndexerName: "P-chain Blocks Test",

Client: testClient,
DB: ctx2.DB(),
Config: ctx2.Config().PChainIndexer,

BatchIndexer: pchain.NewPChainBatchIndexer (
ctx1, testClient, testRPCClient,

pchain.NewPChainDataTransformer (transformPChainTx),

),
}

return cronjob1, cronjob2, mirror1, mirror2, indexeri,
indexer2, nil

}

Recommendation

Skip mirroring transactions that were already mirrored. Improve the testing suite
to account for similar scenarios.

Status

Fixed in commit 86d532eda23569b5a6fcd384bc8ae4fbdooof3e8.

The following checks were added to prevent bubbling expected errors when
mirroring stakes:

if strings.Contains(err.Error(), "transaction already
mirrored") {
logger.Debug("tx %s already mirrored", *in.tx.TxID)
return nil

}

if strings.Contains(err.Error(), "staking already ended") {
logger.Debug("staking already ended for tx %s",
*in.tx.TxID)
return nil

}

© Coinspect 2024 19/37

PS0OS-003

Lack of database privilege segregation

Status Risk
Solved Medium
v
Impact
High
Resolution Likelihood
. Low
Fixed
Description

The service API and indexer currently use the same database without any privilege
restrictions. This means that if the APl is compromised, an attacker could alter the
indexed information.

Such alterations could influence a voter's choice on which P-chain transactions to
mirror and also impact validator uptime information.

Recommendation

Implement a read-only database user for the service API.

Status

© Coinspect 2024 20/37

Fixed on commit dc637d5b6b5b9fhfebB23642ac6287e09a9e30e1.

A note recommending database segregation was added to the project's readme:

Note: We recommend that the user accessing the database is not the
same as for the indexer. The user for the services should only have
read permissions enabled!

© Coinspect 2024 21/37

PS0OS-004

|
The voting service will never include

transactions from reset epochs

Status Risk
Solved Low
A 4
Impact
Medium
Resolution Likelihood
. Low
Fixed
Location

indexer/cronjob/voting.go

Description

P-Chain transactions from epochs that the governance reset on the smart
contracts will never be proved by the voting service. Fixing this situation will
require manual root calculation and voting, potentially leading to omission.

The voting service retrieves the latest epoch where the root is zero, meaning that
a commitment is still required. Then, according to the transactions of the database
it calculates the root and proceeds to vote for that root on the Multisig Voting
contract. However, if the governance resets a root for a past epoch, the voting
service will never re-calculate and vote for that root as epochs are increased
sequentially:

© Coinspect 2024 22/37

// Last epoch that was submitted to the contract

nextEpochToSubmit := utils.Max(state.NextDBIndex,
c.epochs.first)

lastEpochToSubmit := c.epochs.getEpochIndex(now) - 1

for e := int64(nextEpochToSubmit); e <= lastEpochToSubmit; e++

In other words, those transactions on the P-Chain that were not mirrored before
the root was reset will require manual actions by all voters (calculating and voting
for that new root) so they have a valid proof.

It is worth noting this problem is also present in the mirroring service.
Transactions of past epochs that had their root reset and then re-committed will
never be mirrored by the service. However, they can be mirrored by the interested

party.

Proof of Concept

The following proof of concept requires some configurations on the flare-smart-
contracts test/staking2/StakeE2ETest.ts file. The account with the privateKey1l
of the Go tests was assigned as the Governance when deploying the contracts on
that script:

const MOCK_GOVERNANCE = web3.eth.accounts.privateKeyToAccount(
"0xd49743decchccc5dc7baa8e69e5be03298da8688a15dd202e20f15d5e0e9a9fb”

)

This precondition allows testing onlyGovernance calls directly from the Go testing
suite.

Run this test with:

go test ./indexer/cronjob/ -run "TestCoinspect_VotingResetingRoot" -v -
count=1

Output

=== RUN TestCoinspect_VotingResetingRoot

=== RUN TestCoinspect_VotingResetingRoot/Run_indexer_1

=== RUN TestCoinspect_VotingResetingRoot/Run_indexer_2

=== RUN TestCoinspect_VotingResetingRoot/Run_voting_clients_1_and_2
=== RUN TestCoinspect_VotingResetingRoot/Check_merkle_roots

Root at epoch ©: [220 121 237 247 149 216 125 17 22 224 50 223 102 125
26 58 96 246 154 40 10 66 178 32 117 1 44 38 66 181 124 6]

© Coinspect 2024 23/37

Root at epoch 1: [41 13 236 217 84 139 98 168 214 3 69 169 136 56 111
200 75 166 188 149 72 64 8 246 54 47 147 22 14 243 229 99]

=== RUN TestCoinspect_VotingResetingRoot/Reset_root_of_Epoch_0
Waiting 2 seconds...

Root at epoch 0: [0 0 0 0 0 O O OO OOOOOOOOOOOOOOOOOO®O
0 000 0]

Root at epoch 1: [41 13 236 217 84 139 98 168 214 3 69 169 136 56 111
200 75 166 188 149 72 64 8 246 54 47 147 22 14 243 229 99]

=== RUN
TestCoinspect_VotingResetingRoot/Run_voting_clients_1_and_2, _again
Waiting 2 seconds...

Root at epoch @ After New Voting: [0 0 6 0 6 0 0 0 O 0O 0 6 O O 6 @ O O
0O 0O0O0OOOOOOOOOO©06O0]

--- PASS: TestCoinspect_VotingResetingRoot (5.74s)

--- PASS: TestCoinspect_VotingResetingRoot/Run_indexer_1 (0.08s)

--- PASS: TestCoinspect_VotingResetingRoot/Run_indexer_2 (0.08s)

--- PASS:
TestCoinspect_VotingResetingRoot/Run_voting_clients_1_and_2 (0.64s)

--- PASS: TestCoinspect_VotingResetingRoot/Check_merkle_roots
(0.01s)

--- PASS: TestCoinspect_VotingResetingRoot/Reset_root_of_Epoch_0
(2.09s)

--- PASS:
TestCoinspect_VotingResetingRoot/Run_voting_clients_1_and_2, _again
(2.09s)

PASS
ok flare-indexer/indexer/cronjob 6.072s

Test

func TestCoinspect_VotingResetingRoot(t *testing.T) {
now := time.Unix (1675349340, 0) // 2023-02-02 14:49:00 UTC
vCronjob1, vCronjob2, _, indexer1, indexer2, err :=
createTestVotingClients(now)
require.NoError(t, err)

txOpts, err := TransactOptsFromPrivateKey(privateKey1, 31337)
require.NoError(t, err)

t.Run("Run indexer 1", func(t *testing.T) {
err := indexer1.IndexBatch()
require.NoError(t, err)

1)

t.Run("Run indexer 2", func(t *testing.T) {
err := indexer2.IndexBatch()
require.NoError(t, err)

1)

t.Run("Run voting clients 1 and 2", func(t *testing.T) {
vCronjob1.time.SetNow(now)
vCronjob2.time.SetNow(now)
for i := 0; i < 19; i++ {
err := vCronjob1.Call()
require.NoError(t, err)
err = vCronjob2.Call()
require.NoError(t, err)

© Coinspect 2024 24 /37

vCronjob1.time.AdvanceNow (30 * time.Second)
vCronjob2.time.AdvanceNow (30 * time.Second)

}

})

t.Run("Check merkle roots", func(t *testing.T) {
root, err :=

getMerkleRootFromContract(vCronjob1.votingContract, ©)
require.NoError(t, err)

fmt.Println("Root at epoch 0:", root)

root_1, err := getMerkleRootFromContract(vCronjob1.votingContract, 1)
require.NoError(t, err)
fmt.Println("Root at epoch 1:", root_1)

})

t.Run("Reset root of Epoch 8", func(t *testing.T) {
vCronjob1.votingContract.ResetVoting(tx0pts,
big.NewInt(©))

fmt.Println("Waiting 2 seconds...")
time.Sleep(2 * time.Second)

root, err := getMerkleRootFromContract(vCronjob1.votingContract, 9)
require.NoError(t, err)
fmt.Println("Root at epoch 0:", root)

root_1, err :=
getMerkleRootFromContract(vCronjob1.votingContract, 1)

require.NoError(t, err)

fmt.Println("Root at epoch 1:", root_1)

})

t.Run("Run voting clients 1 and 2, again", func(t *testing.T) {
vCronjob1.time.SetNow(now)
vCronjob2.time.SetNow(now)
for i :=0; i < 10; i++ {
err := vCronjob1.Call()
require.NoError(t, err)
err = vCronjob2.Call()
require.NoError(t, err)
vCronjob1.time.AdvanceNow (10 * time.Second)
vCronjob2.time.AdvanceNow (10 * time.Second)

}

fmt.Println("Waiting 2 seconds...")
time.Sleep(2 * time.Second)

root, err := getMerkleRootFromContract(vCronjob1.votingContract, 9)
require.NoError(t, err)
fmt.Println("Root at epoch @ After New Voting:", root)

})
}
Recommendation

© Coinspect 2024 25/37

Handle potential merkle root resets in the voting script. This might require
tweaking the voting smart contract to report the epochs ids where the voting was
reset.

Status

Fixed on commit e4811f18f130c5199b865d3bb99a461e5ddf993f.

Bot operators now can start running the script from a particular epoch by using the
command line options -reset-voting and -reset-mirroring.

© Coinspect 2024 26/37

PS0OS-005

|
Script will attempt to mirror epochs twice

Status Risk
Solved None
A\ 4
Impact
Recommendation
Resolution Likelihood
Fixed -
Location

indexer/cronjob/mirror.go

Description

The epochRange.end of a range will be processed twice. In the event of processing
a range of length 1, it could imply sending a duplicate mirror transaction and
thereby a waste of gas.

The for loop below processes every epoch in the range, including epochRange . end.
Then, it updates jobState.NextDBIndex in the updateJobState function with the
epochRange .end value.

for epoch := epochRange.start; epoch <= epochRange.end; epoch++ {

}

if err := c.updateJobState(epochRange.end); err != nil {

© Coinspect 2024 27 /37

return err

In the next cycle, it sets the start epoch value (epochRange.start) to be equal to
jobState.NextDBIndex. This is, the value of the epochRange.end last processed.

func (¢ *mirrorCronJob) getStartEpoch() (int64, error) {

jobState, err := database.FetchState(c.db, mirrorStateName)
if err !'= nil {
return 0, err
}
return int64(utils.Max(jobState.NextDBIndex, c.epochs.first)), nil
}
Recommendation

The updateJobState function should set jobState.NextDBIndex as epoch+1.
Otherwise, do not include epochRange.end in the for loop by removing the = from

the <= operator.

Status

Fixed on commit 9e3655b5fa50ch81280dcc53f514c733dd2c7cof.

The updateJobState function now sets jobState.NextDBIndex as epoch+1.

© Coinspect 2024 28/37

PS0OS-006

|
Key contextual time-based variables could be

constant
Status Risk
Solved None
v
Impact
Recommendation
Resolution Likelihood
Fixed -
Description

A mismatch between the actual contextual variables (start timestamp and epoch
duration) and the configured by users will disarrange the epoch index calculation
disrupting voting and mirroring.

Currently, users need to setup on the configuration file the first epoch start
timestamp and the epoch duration. However, those variables are immutable and
known from before, according to the PChainStakeMirrorMultiSigVoting contract:

// immutable settings
uint256 internal immutable firstEpochStartTs; // start timestamp

of the first epoch instance
uint256 internal immutable epochDurationSeconds; // duration of an

epoch instance

© Coinspect 2024 29/37

type EpochConfig struct {

Period time.Duration “toml:"period" envconfig:"EPOCH_PERIOD""®
Start wutils.Timestamp “toml:"start" envconfig:"EPOCH_TIME""
First wuinté64 “toml:"first" envconfig:"EPOCH_FIRST""

This structure is error prone and the services might behave unexpectedly in the
event of using different values than the ones submitted to the smart contracts.

Recommendation

Use constant values instead of configurable ones. Alternatively, make the contract
variables public and cache their return values when starting the off-chain services.

Status

Fixed on commit f935d10ch712ebb8060e9b8ee2142a1e2a4345e73.

Contextual values are now retrieved from the deployed contracts.

© Coinspect 2024 30/37

PSOS-007

Service API disclosing internal error

information
Status Risk
Solved None
v
Impact
Recommendation
Resolution Likelihood
Fixed -
Location

services/utils/router.go

Description

The service API discloses internal errors in the HTTP responses. Exposing such
internal details aids adversaries in gathering information about the server,
database, or software. This can subsequently be exploited to target and
compromise the infrastructure.

For instance, when sending a POST request to /exports/transactions with the
following request body:

{
"address": "string",
"limit": 9,
"nodeId": "string",
"offset": 0,

© Coinspect 2024 31/37

“time": "2023-09-21T717:50:00.785Z"
}

The server returns internal information about the database structure:

Error 3065 (HY@G0O): Expression #1 of ORDER BY clause is not in SELECT
list, references column 'flare_indexer_services.p_chain_txes.id' which
is not in SELECT 1list; this is incompatible with DISTINCT

Recommendation

Return generic error messages instead. If desired, log error these internal error
messages.

Status

Fixed on a37bf39e2c6d047806438cP43b4a5b4c5b8709ba.

Logs now return a generic error message.

© Coinspect 2024 32/37

Disclaimer

The information presented in this document is provided “as is” and without warranty.
Security Audits are a “point in time” analysis, and as such, it's possible that something
in scope may have changed since the tasks reflected in this report were executed. This
report shouldn't be considered a perfect representation of the risks threatening the
analyzed systems and/or applications in scope.

© Coinspect 2024 33/37

File hashes

File hashes of the commit ee8632512bd70d12e2b2738df9321a23e8b5e394, of September
11th, 2023.

375¢3926b7ad6023b8dd1578272aef846cbcfB0e1dd1f47033b941fb018fae4da
9b3ed5a861896c3cfB41b3f708fc43849a5148e0cBbbce55f0d4f4e511897cab
bf6a7e@d6decfdb258f5e3beaf4640293df1ece19e1e135beB5337166ad95c7e
f53e5e47b484dacc3b871c540a4d6b355b8558a17987b325ed2achaee9e56129
6ae416e0e136b7fd307df12dae3b4888bBeBab75b51fe55ff68df03d39a2aede
563b5e02ac69f438048b37cd10caec75510e8c1a3475a479362d618c5¢c6bc992
a5500b068d54b1a93d475d030dc3666119d81b46d43e9c479296bab569ae0c35
72cce777dc9a5d8052¢c7d94479418111045261d0f9f478fc4058ff789¢25788d
876def176dae9fB5e10ea5a8ed4c272610f2c6db8c8e24e7760b8a161653a865
dada26cde92cBa6d5602c36ac09376edbal17962adfe43f4f054563 418380512
f8f26b72e85663ad4be568608a9e2bf526274e047abebcfffcal9c6827¢c54d04
bd97335d117cc2beb1c941901b4c16ac230b81144f978aa7f808db882d75b551
14ec7310214a5301e11a5ca80244440600a9c37fddf07e67de8a2d0377f3eb429
f1c6492c62ad8chf1856240a3109b0952ch4320d1da566319275adda2882902f
086eb26af541dc54c2f3aal14dc01c374369d1492542fe1e72b4065d04a45a878b
6302a2fc084f1ce3fed796efb8f7cb4133145f35789bab369a374b675e689482
807acBabd82bc379b3ff69f2f5f247a1bedccd353b71f463f3ea5166e56b4a55
b454a74beb7b5e6e8da10415a2d9f3aBca8b8579a3¢c611653ecdaf4ce7bB87ca
c4ed82ac652c1a8b79f2e015ab58cc8b275cchbd72b527f0fa6659aee74bBe2e0
17ad9f76d72211fe22bba335619092c49ecc1b6cc984f32c7990bffd0a25a006
cd6c63cb61f6e77dalfB5eechbb6e8ceedcaeb8ead403dbb1968c7015aaad66cbbf
b474696022be4eb2e17018deBaa2e65603d5180328d090cfeeec562bf45dc60b
./utils/contracts/mirroring/autogen.go
e41fbc618f8f260ee0213871ae6fedd1fdOc754d19976d13fead4Bab41b4c7398
./utils/contracts/mirroring/mirroring.go
ee3ac541007429737631c0fa9219¢c0B3111725949163560993e6d32cdf5dbcdcc
1519d2ec178ecb29d6f6daa39daB4bd35453d27729d8ed0808c9d28bc24b394a
6ea34b8f7aa64faB43c93dd5572df50e4066€03072e7c0d78e493e81bb34fcd4
b175e51239ebd04b494ad6ccOdd3b342c98bc2e6a7f73af57097775b93d31e37
./utils/chain/indexer_client_test.go
72b91b0f56cd4f8e796ebBb61ab1f58b171804f214561631¢c518dadc71b0B7de3
e52abaf1facdbf40db6b9a93f298d64ebde65228a72f9c7dac144d41a562echc
5973141db5314b3ef2190f6f50baddd8620a791859a62fa1b9497e0901522141
956415f58c14219f09a5283dd6a6t5291a7dce1d6fc1e09c9cf81be276d70dff
./utils/chain/p_chain_rpc_client_test.go
bc185a0231eeab5846d111dd3242e74905f0b65833864a7e88a8619d2d710ff3
94a22a25ae5875ff7772d5b1cbbc507c95e8e8e76acabbbh7838ebc2ba56022fh
8bed42e03d7fd8202ba83f4e2e9d0c066414bccO1111b68cd31deead468edb72
d6d7c84ee5ce4d3f98c46cchasbcdcB8766a97¢c83882a145a7e598a324557b584
62bfcOb2de4771984c7295ba7ad0d5f74ee97608b3c9017f676f9e458a8221aa
98e287b61a63836dd79dbB6e7cab55e0d744001ef102b26c174757ecdbB3abe
827d97a9780269460088e0185541db22bbdf1b09a266f79dfed2dcf50c3ec916
294dd66551b7b0Ba81fc41d9822271f75e23c5f24099f0d33139a6dee736d9%ea8
0feff438b4a2bc69703b48b9d695791eabB8d7406c4405c6f3ed3f2bb7b64073
dfef42c56848a9545efce3969bfc45bchb82e28a7687197683267102b8acde37
£478823bfc2af47f86599b39003d6b035ab75d8ff7880d6625a9a2874eb9a73a
ef5cb73bb333324f1c5f247a7604c6f31dc2a83e17403d866e98f66802908735
14e4d401b1660dd6d47d2241971f990d2c52a46f5d304e0ddfO45b8a2a9ad56e
8bla4ca5d238bcf878465ea5fh724a754321f35722236d471d1fcb71579927b4
8801701b4c9e9f746fa288bB6e4815916ecdel11bc24d7d3cd59efc5d5578699%¢
9cde08026adcoOffodbcb7618d10acadc37e5fba5ac6f76f36199866a2549e6b8
2ca728fc82e9829979d2600197f4bf9973a47d89b56a6efe59bch4b056483c53
9ff32583b70ba35a045a607677fcOb4da268519b3dcO7a8e9eal8ae566cf8cdc

© Coinspect 2024

. /database/methods.go
./database/pchain_queries.go
./database/types.go
./database/queries.go
./database/entity_utils.go
./database/pchain_entities.go
./database/creators.go
./database/utils.go
./database/cronjob_entities.go
./database/testing.go
./database/entities.go
./logger/logger.go
./logger/colors.go
./config/config.go
./config/callback.go
./utils/encoding.go
./utils/cache_test.go
./utils/address.go
./utils/time.go
./utils/contracts/voting/autogen.go
./utils/contracts/voting/voting.go

./utils/cache.go
./utils/merkle/merkle.go
./utils/merkle/merkle_test.go

./utils/chain/indexer_client.go
./utils/chain/client.go
./utils/chain/p_chain_rpc_client.go

./utils/chain/uptime_client.go
./utils/chain/uptime_client_test.go
./utils/chain/testing.go
./utils/url.go

./utils/toml.go

./utils/math.go

./utils/errors.go
./utils/structures.go
./indexer/pchain/indexer_test.go
./indexer/pchain/batch_indexer.go
./indexer/pchain/entity_creator.go
./indexer/pchain/migrations.go
./indexer/pchain/in_updater.go
./indexer/pchain/indexer.go
./indexer/pchain/utils.go
./indexer/pchain/main_test.go
./indexer/migrations/container.go
./indexer/context/context.go

34/37

014b96b073fe35d99¢673dd8d9a7cd681097204099eb38e3a00adc42af28266
€81268e5e612120373047b8c7bfeB8f1be67e4c46f5d80720e6d9e3f5e2b31ca
1dab2060cfecdb728b8e78aa4c8d991c61f4bc7ec15d11274034a57fe61184516
6660cb5b40f6d5caadfbfa6d70c6934ec33b56d74b54476da76423d01188e946
6023c662a56a9f659bab53b02450f613582b03b9cd483¢c38b4b28a272ab1af9a
6566fad4ca799a51ad70ee5944d7¢c6617f780186114f244f7abbedf722a5¢97¢9
749230f955d75e75¢c318940a7e7f36b8fab5a7bch9bbac3da42ef735143f7574
03804504cd4119415caa459e2081115ad25f603859fbba5a560bab9612b75eba3
913e50a79e6297a0b9fe8ba5811050d22e031b232e14a2fd1607210ba27bobbe
6ed4fde06d204227e4689ce4d6dbc1b250648409987¢c9c77b268ccdB0dfadd5e9
ebf112693eebbcbea43ch89e4e5fe2762ce14030dcOceddf7ec7167440bf0e79
3768301b949bbeb944818d8babbch8360e249¢cf91905b27eb4e12171a15f8912
bafb6dd54bf84844eb7e667560b0a55f600a8e04b18d3ae2581eccadd31ccfce
c91fa8eb9c44753acae45fbb02203dfb246969d6c4a86142762abdc581b7b527
d8f743b36b9712dbf5138a19eba5fae3abc3e25ab769889b0Bb3e86b4cfe8e938
./indexer/cronjob/uptime_voting_test.go

42ea489b4248d0eBchb973df8763659da28dde5852929bd5f05995288befbaef9
a47145207e1d589c9a177a19b4ce53c55d47a23b1ef12b5bc727e48b033250d8
af@0B1daeccab5b2973ea3bfa3bed4a2f9d6de1f5c6ffOed13b52ef9104bfad4
8eaa49996b48f226ef3a37524ad1389a00dakab6148e04c103db4dd6cO6d606€e
106567e604abb67607f7e05d0a24ac2481ef55432218cd93029dcf772572¢c24c
feBde45a263d08352a42fb986956cdb25746437b607bBb5b7c416ba2804acd74
d5b@55aa8cec51c87acd5¢cd7d892b310023600b3fdba5a3765982f85d806eald
babefae2cBca55dd794113f8f134ef24c75a34c954acd1b7fbOd6596d212e30e
632a3d9f0abc17d0aBbd82100076e3bd970e528aafc2fb3337a5fc1ch28ccoef
8233cc62d0d4782710ffelef2eb15a8ca911c036068e5a5a828e10b37fc47e87
df96990da592f11d24c191364bc75f2ae8d38e4c9f92fdbc68abbcdB4544e00e
6ebbb8792ffe8061a%aced38feecBe613b52b8c96123a208959606e5471d560c
ee20cae9ad5d385chb0623ec3f5acd7b2a65b75223¢c83d7465f3bc92ca70b3005
0fd449aef232097a67e27606d1d781ee9c6b7d180cd4d28546d179983823734e
£8508962c659930780eced801b50cc5af7686ab8d465331e3b996a3323e6d247
4c1f2895e46803a7af18040862355d2cab140a8a5913366ec7532b4134306b2b
303dc6dc816fc713822ff4c17¢c88fd6fObfal103c4eeb38597a35a7e007b8fad%b
6e0c1a13c6c51b72fb26d66551e8ed4c34c0f6432395d7ace3bd8ccf19d04980
3bB07dfdebaabc2aBa21f5261be1c00203533189aa90feBa7c7c5f15e0aff7b2
d43b9bae78f88fe14ccd88df1004c8bb68bf4095bfd1c2c7eb52f4b974da%bab
6acacd74704de91ddf89adbe4d16773e7651c7aac58c75b99ab61a12ab443656
31132d4ecf58a332079¢c52e6d7e0f1b764457746e32df82bc210036edd0d1aae
3d8691a28399fbc7edd126788a77a9b8a56b2867750952883d99482688ech7e5
1d091cde41022f0B72befbb7577387508680063fe20193e427f53a22774b31c04
efbafb47668da5cc51a67690e03d8c2falbe76994bde3d8c8e3406bbh50009f8¢c

./indexer/context/testing.go
./indexer/config/config.go
./indexer/runner/runner.go
./indexer/shared/types.go
./indexer/shared/indexer_metrics.go
./indexer/shared/inout_indexer.go
./indexer/shared/base_tx.go
./indexer/shared/in_updater.go
./indexer/shared/indexer.go
./indexer/cronjob/mirror.go
./indexer/cronjob/uptime_voting.go
./indexer/cronjob/voting.go
./indexer/cronjob/migrations.go
./indexer/cronjob/utils.go

./indexer/cronjob/uptime_test.go
./indexer/cronjob/uptime.go
./indexer/cronjob/voting_test.go
./indexer/cronjob/cronjob.go
./indexer/cronjob/main_test.go
./indexer/main/indexer .go
./services/context/context.go
./services/context/testing.go
./services/config/config.go
./services/utils/encoding.go
./services/utils/services.go
./services/utils/validate.go
./services/utils/testing.go
./services/utils/router.go
./services/api/pchain.go
./services/api/attestation.go
./services/api/shared.go
./services/main/services.go
./services/routes/query.go
./services/routes/query_test.go
./services/routes/staking.go
./services/routes/types.go
./services/routes/transactions.go
./services/routes/transfer.go
./services/routes/main_test.go

File hashes of the commit c38fa4913cfd529a764ced791e111e2215217c7f, of September

20th, 2023.

375c3926b7ad6023b8dd1578272aef846cbcfoBe1dd1f47033b941fboB18faeda
58bab7915fd8bdBaf8398aa7df4531f39¢c322f87052401013e8e730148978267
bf6a7eBd6docfdb258f5e3beaf4640293df1ece19e1e135beB5337166ad95c7e
f53e5e47b484dacc3b871c540a4d6b355b8558a17987b325ed2acbaee9e56129
6ae416e0e136b7fd307df12dae3b4888bBeBab75b51fe55ff68df03d39a2aebe
563b5e02ac69f438048b37cd10caec75510e8c1a3475a479362d618c5¢c6bc992
a5500b068d54b1a93d475d030dc36661f9d81b46d43e9c479296bab569ae0dc35
72cce777dc9a5d8052¢7d94479418111045261d0f9f478fc4058ff789¢25788d
876def176dae9fB5e10ea5a8ed4c272610f2c6db8c8e24e7760b8a161653a865
dada26cde92cBa6d5602c36ac09376edbal17962adfe43f4f054563 418380512
f8f26b72e85663ad4be568608a9e2bf526274e047abebcfffcal9c6827c54d04
bd97335d117cc2beb1c941901b4c16ac230b81144f978aa7f808db882d75b551
14ec7310214a5301e11a5ca8024444000a9c37fddf07e67de8a2d0377f3eb429
25a7478144737775a5bchfb88aafe58d665¢724788bf1969d5824f7606f8adf4
086eb26af541dc54c2f3aal4dcO1c374369df492542fe1e72b405d04a45a878b
6302a2fc084f1ce3fed796efb8f7cb4133145f35789bab369a374b675e689482
807acBabd82bc379b3ff69f2f5f247a1bed4ccd353b71f463f3ea5166e56b4as5
c4ed82ac652c1a8b79f2e015ab58cc8b275cchbd72b527f0fa6659aee74bBe2e0
17ad9f76d72211fe22bba335619092c49ecc1b6cc984f32¢c7990bf fd0a25a006
cd6c63cb61f6e77dalfB5eechbb6e8ceedcaeb8ead403dbb1968c7015aaa466cbbf
c78f5d7dda7a53ffed8febdc116545b502a99e8347ccf9fc24ce52d4b2564141

© Coinspect 2024

. /database/methods.go

. /database/pchain_queries.go
./database/types.go
./database/queries.go
./database/entity_utils.go
./database/pchain_entities.go
./database/creators.go
./database/utils.go
./database/cronjob_entities.go
./database/testing.go
./database/entities.go
./logger/logger.go
./1logger/colors.go
./config/config.go
./config/callback.go
./utils/encoding.go
./utils/cache_test.go
./utils/time.go
./utils/contracts/voting/autogen.go
./utils/contracts/voting/voting.go

35/37

./utils/contracts/addresses/autogen.go
4169db264b0c08e2629b3e5caa2bf7a252b6eb9fbe27fbfd587a067427e42eb9
./utils/contracts/addresses/binder.go
b474696022bedeb2e17018debaa2e65603d51806328d090cfeeec562bf45dc606b
./utils/contracts/mirroring/autogen.go
e41fbc618f8f260ee0213871ae6febd1fdOc754d19976d13fead0ab41b4c7398
./utils/contracts/mirroring/mirroring.go
ee3ac541007429737631c0fa9219c03f11725949163560993e6d32cdf5dbcdcc
1519d2ec178ecb29d6f6daa39daB4bd35453d27729d8ed0808c9d28bc24b394a
6ea34b8f7aab4fa043c93dd5572df50e4066€03072e7c0d78e493e81bb34fcd4
2133684912¢c3e554344b7694f76686ab2f32d05cf71a1f87537bc594af4fe763
./utils/chain/indexer_client_test.go
8dabeddb49cc194b61817d1e22cb81624305b3d31d60dc28a6f22e6efdb76d9f
72b91b0f56cd4f8e796ebBb61ab1f58b171804f214561631c518dadc71b0B7de3
e52abaf1facdbf40db6b9a93f298d64ebde65228a72f9c7dac144d41a562echc
5973141db5314b3ef2190f6f50baddd8620a791859a62fa1b9497€0901522141
956415f58¢c14219f09a5283dd6a6t5291a7dce1d6fc1e09c9cf81be276d70dff
./utils/chain/p_chain_rpc_client_test.go
bc185a0231eeab5846d111dd3242e74905f0b65833864a7e88a8619d2d710ff3
1c12d9c8cPa438dceB8a52120007e7e4fa99693ef8d893174a8617bc2793ddd8e
8bed42e03d7fd8202ba83f4e2e9d0c066414bccO1111b68cd31deead468edb72
2957afdealecedb3a9228b39d91ee25211e66109e042d982eb1ee9e118404f08
c601f256c0ch20bd7eddf263ca2d513af492f3fddd5a3329c3a5666efef3809e
d6d7c84ee5ce4d3f98c46ccha5cdc08766a97c83882a145a7e€598a324557b584
62bfcBb2de4771984c7295ba7ad0d5f74ee97608b3c9017f676f9e458a8221aa
98e287b61a63836dd79dbB6e7cab55e0d744001ef102b26¢c174757ecdbB3abe
827d97a9780269460088e0f85541db22bbdf1b89a266f79dfed2dcf50c3ec916
294dd66551b7b0Ba81fc4fd9822271f75e23c5f24099f0d33139a6dee736d%ea8
05287575644134c4cc503c0f5c767f66d3095a849e73dff89852439f1addch2d
dfef42c56848a9545efce3969bfc45bcbb82e28a7687197683267102b8acd037
f478823bfc2af47f06599b39003d6b035ab75d8ff7880d6625a9a2874eb9a73a
ef5cb73bb333324f1c5f247a7604c6f31dc2a83e17403d866€98f66802908735
14e4d401b1660dd6d47d2241971ff990d2c52a46f5d304e0ddfO45b8a2a9ad56e
8b1a4ca5d238bcf878465ea5fh724a754321f35722236d471d1fcb71579927b4
8801701b4c9e9f746Ta288b06e4815916ecdel1bc24d7d3cd59efc5d5578699%¢
f67d41b2128914ae2802b9b74200240ee714bca5d4d85b939be9dcc3a84dad8e
2ca728fc82e9829979d2600197f4bf9973a47d89b56a6efe59bch4b056483¢c53
9ff32583b70ba35a045a607677fcOb4da268519b3dcO7a8e9eal18ae566cf8cdc
014b96b0B73fe35d99c673dd8d9a7cd68f097204899eb38e3a00abc42af282616
d4cd97b71e23efedba10a6111608c04a8edcBa87a49661b8ba21acd5b8e1aa84
1dab260cfecdb728b8e78aa4c8d991c61f4bc7ec15d11274034a57fe61184516
6660ch5b40f6d5caadfbfa6d76c6934ec33b56d74b54476da76423d01188e946
6023c662a56a9f659bab53b02450f613582b03b9cd483c38b4b28a272ab1af9a
6566fad4ca799a51ad70ee5944d7¢c6617f780f86114f244f7abbedf722a5¢c97¢c9
d207f31f9b320450427696c33453020d7749e6b527ffd74c682652b4461aed1f
03804504cd4119415caa459e26081115ad25f603859fbba5a50bab9612b75eba3
913e50a79e€6297aBb9fe8ba5811050d22e031b232e14a2fd1607210ba27bBbbe
85e7432f2c1123ab3fdBbe10e1379987f472ab11582¢787bf4f22f86dd94a434
5fa49f501112952babde6045aec7a4eb8705a897b810d445dd8782025f fac8f4
6a168b2e02994b1dBa1f15265d78d6c259cc30533e5e061ebad2fef56b514119
./indexer/cronjob/voting_integration_test.go
567da2348064e2caabded®b170dfb7b8121a6a462e4217cc69a33490632a7c0a98
dac2892645b9bc5b230334717e00bdcf4686948f1dab7155caa4b56bf79b5395
bafb6dd54bf84844eb7e667560b0a55f600a8e04b18d3ae2581eccadd31ccfce
8efc41678532ad7d8bb2da4ebB118bB3ad6c792c3d2f8483cfd3696bb10e98e1
7495f3028a309743286730f4c5ffc1e257e67119f3eb2cffb87359a6f2dc5543
e37596f9e7cead7dc21fa8da1d3874bc83119d5ffcc735120782783def203b2
./indexer/cronjob/uptime_voting_test.go
1ebe02289f3b4ccO7acd367659100ab2e34b86ece9b33913223c57c64e6a65d3
dd5225148effdf57745cccd310b661bb17305926e02c5da42f028cf6c1b49110
a47145207e1d589c9a177a19b4ce53c55d47a23b1ef12b5bc727e48b033250d8
8366d6c1ef091150ea027da681e172¢57d94716ff3f14d108a85584236352bf0
4bb6c72deebalefeaab241a9d6a31bfc2151008bccfccbac2e7e596ccefc8alb
0d1222445fade1aaa536097b3360aee7fed43465f53eb98a6af721f622f96c72
febde45a263d08352a42fb986956cdb25746437b607bBOb5b7c416ba2804acd74
d5bB55aa8cec51c87acd5cd7d892b310023600b3fdba5a3765982f85d806eald
babefae2cBca55dd794113f8f134ef24c75a34c954acd1b7fbOd6596d212e30e
45cd6cebb49e56d9abe37426270d2aa61e994a3f15e3929bfa8c5fcfB6af604d
daecef5f08fdfac028a8e990bcd24e6271d62e83aa428652a5bb7710610ec206

© Coinspect 2024

./utils/cache.go
./utils/merkle/merkle.go
./utils/merkle/merkle_test.go

./utils/chain/address.go
./utils/chain/indexer_client.go
./utils/chain/client.go
./utils/chain/p_chain_rpc_client.go

./utils/chain/uptime_client.go
./utils/chain/uptime_client_test.go
./utils/chain/testing.go
./utils/staking/epochs.go
./utils/staking/utils.go
./utils/url.go

./utils/toml.go

./utils/math.go

./utils/errors.go
./utils/structures.go
./indexer/pchain/indexer_test.go
./indexer/pchain/batch_indexer.go
./indexer/pchain/entity_creator.go
./indexer/pchain/migrations.go
./indexer/pchain/in_updater.go
./indexer/pchain/indexer.go
./indexer/pchain/utils.go
./indexer/pchain/main_test.go
./indexer/migrations/container.go
./indexer/context/context.go
./indexer/context/testing.go
./indexer/config/config.go
./indexer/runner/runner.go
./indexer/shared/types.go
./indexer/shared/indexer_metrics.go
./indexer/shared/inout_indexer.go
./indexer/shared/base_tx.go
./indexer/shared/in_updater.go
./indexer/shared/indexer.go
./indexer/cronjob/mirror.go
./indexer/cronjob/mirror_test.go

./indexer/cronjob/uptime_voting.go
./indexer/cronjob/voting.go
./indexer/cronjob/migrations.go
./indexer/cronjob/mirror_stubs.go
./indexer/cronjob/utils.go

./indexer/cronjob/uptime_test.go
./indexer/cronjob/voting_stubs.go
./indexer/cronjob/uptime.go
./indexer/cronjob/voting_test.go
./indexer/cronjob/cronjob.go
./indexer/cronjob/main_test.go
./indexer/main/indexer.go
./services/context/context.go
./services/context/testing.go
./services/config/config.go
./services/utils/encoding.go

36/37

df96990da592f11d24c191364bc75f2ae8d38e4c9f92fdbc68abbcdd4544e00e
6ebbb8792ffe8061a9aced38feecBe613b52b8c96123a208959606e5471d560¢c
ee20cae9ad5d385ch0623ec3f5acd7b2a65b75223¢c83d7465f3bc92ca70b3005
22813667ea76d2a8b2dac3d1bfBc8c65ce30c7180e4f7d8bb2f262d8b72aeal3
8508962c659930780eced801b50cc5atf7686ab8d465331e3b996a3323e6d247
4c1f2895e46803a7af18040862355d2cab140a8a5913366ec7532b4134306b2b
303dc6dc816fc713822ff4c17c88fd6fBbfal03c4eeb38597a35a7e007b8fadb
ead2c1d2cechBacbb81d939f372b5aeba30500bb657056054fh4674a07e483e6
3b007dfdebaabc2aBa2115261be1c00203533189aa908feBa7c7c5f15e0aff7b2
4d05d06931ca7c145898a6d9e1052f133faeb6febOca5c8395ab5c7e1fde8a88
6ff8ef94ac1e8c959f21183922381a8a7348383d97d319e09c530dc39d7aa8e4
31132d4ecf58a332079c52e6d7e0f1b764457746e32df82bc210036edd0d1aae
5790e734cdf1f6a8bcaede7fb93b082f151dfdddc9740bd584ec7a9bbcbab2ab
3dB691a28399fbc7edd126788a77a9b8a56b2867750952883d99482688ech7e5
bc77c0080b451bb826f4b4aab2d24f4ef611d732822d37bd785906¢3337b26Fh
d5f92ebca70efe65baf0861c613751d889e5208d6644379d4170785dea5a8783
aca99b7167b536c182413a7e36a6498e25f0d8c69¢c1267b0d422d1ed71298¢c77

© Coinspect 2024

./services/utils/services.go
./services/utils/validate.go
./services/utils/testing.go
./services/utils/router.go
./services/api/pchain.go
./services/api/attestation.go
./services/api/shared.go
./services/main/services.go
./services/routes/query.go
./services/routes/query_test.go
./services/routes/staking.go
./services/routes/types.go
./services/routes/mirroring.go
./services/routes/transactions.go
./services/routes/transfer.go
./services/routes/mirroring_test.go
./services/routes/main_test.go

37137

