
StakingP2
Off-chain services

Security Review

© Coinspect 2024 1 / 37

Staking P2 Off-chain Services
Source Code Review

Version: v240220 Prepared for: Flare November 2023

Off-chain Services Review

Executive Summary

Summary of Findings

Solved issues & recommendations

Assessment and Scope

Integration With the Mirroring Protocol

Architecture Overview

Trust Assumptions

External Calls Handling

Interactions With External Services

Changes introduced by new commit

© Coinspect 2024 2 / 37

Fix Review

Detailed Findings

Disclaimer

File hashes

© Coinspect 2024 3 / 37

Executive Summary

In September 2023, Flare engaged Coinspect to review the off-chain Mirroring
Services implementing the Flare Staking Phase 2 Mirroring Protocol. The objective
of the project was to evaluate the security of the scripts responsible for voting and
mirroring staking positions. These operate with other peripheral services such as
Indexers, resulting in a system in charge of linking the state of the P-Chain with the C-
Chain's.

The following issues were identified during the initial assessment:

Solved Caution Advised Resolution Pending

High

1
High

0
High

0

Medium

2
Medium

0
Medium

0

Low

1
Low

0
Low

0

No Risk

3
No Risk

0
No Risk

0

Total

7
Total

0
Total

0

PSOS-001, a high-risk issue, highlights how the current project's environment setup is
prone to leak user's credentials. The first medium-risk issue, PSOS-002, depicts how
adversaries can force a mirroring service to stop working by mirroring the stake
themselves. Additionally, PSOS-003 outlines a lack of user segregation in the database.
Lastly, the remaining low-risk refers to the fact that reset epochs are not properly

https://flare.network/
https://www.coinspect.com/

© Coinspect 2024 4 / 37

handled and will never be voted again by the service, thereby requiring manual voting
and root calculation, reflected in PSOS-004.

It should be noted that the Flare team addressed PSOS-002 in the most recent commit,
prior to Coinspect reporting the issue.

© Coinspect 2024 5 / 37

Summary of Findings

Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could improve
the long-term security posture of the project.

Id Title Risk

PSOS-001 Insecure handling of voters private keys High

PSOS-002 Adversary can force mirroring services to stop working Medium

PSOS-003 Lack of database privilege segregation Medium

PSOS-004
The voting service will never include transactions from

reset epochs Low

PSOS-005 Script will attempt to mirror epochs twice None

PSOS-006 Key contextual time-based variables could be constant None

PSOS-007 Service API disclosing internal error information None

© Coinspect 2024 6 / 37

Assessment and Scope

The source code review of the Flare Staking Phase 2 Mirroring Services project
started on September 11th, 2023, and was conducted on the staking-clients branch
of the git repository located at https://github.com/flare-foundation/flare-p-chain-
indexer as of commit ee0632512bd70d12e2b2738df9321a23e8b5e394.

Overall, the code was easy to read and understand. However, Coinspect suggests
including more documentation and specifications regarding its use cases considering
the strong trust assumptions of the system. Coinspect also recommends adding more
integration testing cases to include adversarial scenarios or situations where a
condition is changed directly on the C-Chain (smart contracts). For example, tests
considering root resets, threshold changes, etc.

The mirroring services are comprised by several jobs, each one in charge of a specific
key task required by the Mirroring Protocol. Particularly, the services implemented
cover the following tasks: Uptime Tracking and Voting, Root Voting, Stake Mirroring,
and Transaction Indexing.

Integration With the Mirroring Protocol

The reviewed off-chain services work as a nexus between the transactions made on
the P-Chain and the corresponding smart contracts on the C-Chain. As a result, users
are able to stake or delegate into a P-Chain node, and receive rewards on the C-Chain.
This is achieved by the Transaction Mirroring Protocol comprised by actions made off-
chain and on-chain. Trusted entities called voters receive a set of indexed transactions
for each epoch, calculate their merkle root and vote for that root on the C-Chain's
smart contract. This process is responsibility of the Root Voting service.

When the voting threshold is reached, a root is committed and anyone can mirror a
proved transaction into that chain, hence, a Mirroring service handling those
transactions is also included into the off-chain suite. In addition, voters are in charge of
tracking the node uptime by emitting an event on the same C-Chain contract, carried
out by the Uptime Voting script. Those actions require the collection of each
transaction and node status from the P-Chain, which is performed by the Uptime and
Indexer services.

https://github.com/flare-foundation/flare-p-chain-indexer

© Coinspect 2024 7 / 37

Architecture Overview

The architecture is based on goroutines that run each job concurrently, relying on an
external transaction database that is populated by the indexing service. It is flexible,
allowing users to choose between which jobs they will run. For instance, a non-voter
user is able to run the indexer and the mirroring service, calling the smart contract
subsidizing the mirroring of stakes. Likewise, voters will also run the voting services
providing merkle roots to the voting contract and submit validators uptime records.
Coinspect identified that the current project's architecture requires users to store their
credentials on the same configuration file along with other parameters, and most
importantly does not protect that file against accidental commits or pushes to the
version control system, PSOS-001.

Each service relies on the database's state which is populated by the indexer service.
Moreover, because all other services work in an epoch-based time frame, a critical
aspect is updating internal indexes (used in for loops) and database registries properly.
In the event of having a delay or disarrangement between the current block, epoch or
internal indexes, each service would likely stop working as intended. For example, as
each service loops over each epoch in a sequential way, if the Governance resets a root,
voters will require to manually calculate and vote for the new root of that epoch, PSOS-
004. Also, Coinspect identified that the database can be altered from different sources,
such as API calls. In the event of the API key compromise, adversaries would be able to
alter information in this database, and therefore affect voting results.

Trust Assumptions

Regarding voters and their incentives to act in an honest manner, the system assumes
that they are all trusted entities that will not become rogue or collude. In fact, this
assumption combined with the insecure private key handling could lead to a denial of
service if a supply chain attack is used to compromise the nodes and/or several
credentials are leaked. For instance, with a voting threshold of 6, and 5 keys
compromised the system would become non operational.

Censorship and Collusion

The incentive program for voters to act honestly is unclear. In other words, there are
no punishments or incentives that prevent voting collusion or censorship against a
specific set of transactions or accounts. In short, in the event of having compromised
keys or voters turning adversarial, the system does not implement preventive actions,

© Coinspect 2024 8 / 37

protecting the mirroring protocol with corrective countermeasures such as merkle root
resets and revoke stakings made directly on the C-Chain contracts relying on the
Protocol's Governance.

External Calls Handling

Interactions with foreign data sources such as contracts and nodes are made through
two different clients: Avalanche Indexer Client and Avalanche RPC Client. They both
require an API Key in order to establish connection, facing the same issue as the
private keys mentioned on the Architecture Overview section in the present
Assessment. Calls made to contracts on the C-Chain have no specific gas estimation
rules, relying on the estimation of the node.

Native Balance Checks

Currently, there are no checks to ensure that a user running the off-chain services has
enough native balance to cover the gas fees. Running out of native tokens will trigger a
revert on those jobs performing calls to the contracts, until the account is funded.
Coinspect suggests adding monitoring services into Prometheus that track each user's
balance, which trigger an alert when the account's balance falls below a threshold.
Additionally, a balance check could be added when each service is started.

Smart Contract reverted transactions handling

In terms on how the services handle revert conditions, Coinspect identified that this
field could be improved. Specifically, several critical updates such as next epoch
indexes of the mirroring services are made only if the call to the contract on the C-
Chain was successful. In other words, a revert on the smart contract triggers an early
return on every single service which should consider when updating internal indexes,
for example.

Regarding the voting service, this condition is handled by the call made to the
shouldVote function, ensuring to submit a vote only for the current epoch if the root has
not been committed or the voter has not voted. However, Coinspect identified that
reversals are not properly handled in the mirroring service, where adversaries can
front-run stake mirroring transactions to stop each service potentially leaving all
mirroring services non-operational, PSOS-002.

© Coinspect 2024 9 / 37

Interactions With External Services

During this engagement, Coinspect did not review how the validator uptime data is
consumed once the respective event
(PChainStakeMirrorValidatorUptimeVoteSubmitted) is emitted. As the design of the
uptime voting system found in the smart contracts is lightweight, it only emits the
event provided by its caller. Services consuming its data should handle adversarial
scenarios such as double voting, voting for fake nodeIds, among others.

A similar situation relates to nodes providing P-chain and uptime data. The current
engagement has not addressed potential issues from nodes set up incorrectly or with
weak security protections.

© Coinspect 2024 10 / 37

Changes introduced by new commit

On September 20th, 2023, a new commit
(c38fa4913cfd529a764ced791e111e22f5217c7f, tag audit-09-20) was provided by Flare's
team. These code modifications introduce several changes and bug fixes which were
reviewed during the last two days of the engagement.

Fixed PSOS-001: Private keys are now retrieved from an external file.
Added new queries to the database allowing to fetch a list of stakers available at a
specific time.
Added epoch cronjob support.
Split jobs into two files, main and stub. The main job file performs core actions
whereas stubs provide each job with peripheral actions (such as utility functions).
Several functions where moved from the utils file to each stub.
Fixed PSOS-002 (independently discovered by the Flare team): Expected reverts
when mirroring transactions are now handled.
Added two new API endpoints allowing querying mirroring information.
Added new functions to the staking endpoint.
Added several unit tests to each service. Coinspect suggests more scenarios are
tested, for instance, evaluate how the scripts behave if a condition or parameter is
modified directly on the C-Chain contracts.

© Coinspect 2024 11 / 37

Fix Review

On October 2nd, 2023 Flare provided an updated repository commit with fixes for all
the issues reported. Additionally, they made fixes and improvements to the source
code.

Improvement: Added the configuration option
delete_old_uptimes_epoch_threshold to remove uptime info for epochs already
voted for (commit c9b1b3cc89cd4fa16a9600626579940c042a1742). This feature calls
on each loop a cleanup function that deletes from the database registries of old
uptime epochs to prevent it from growing too large. Only data older than 5 epochs
can be deleted.

Fix: Voting and mirroring is only performed for input with index 0. Previously, voting
and mirroring was done for all input addresses with the same weight (total staked
amount) which could potentially lead to rewarding a staker multiple times (commit
9c23c230a8dec0b505b1c41539b2dc1899989792).

Improvement: gasLimit was estimated automatically and it was tight (by library we
use). Since the gas used depends on the order of execution after estimation if two
or more votes were submitted at about the same time, then and they happen to use
the same estimate, the one that puts in the block later fails due to all gas used
(note the limit is tight). Now there is option to set gasLimit through env variable
(commit a8a4e2c98b3a5c8277a74bcb7a4bedfd1364a873).

© Coinspect 2024 12 / 37

Detailed Findings

PSOS-001

Insecure handling of voters private keys

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

config.toml

Description

The current project's structure does not fully protect voter's and operator's private
keys or endpoints, increasing the likelihood of disclosing sensitive data as the
default configuration file is already pushed into the main branch.

Each voter has two different ways, as per the project's documentation, to create
configuration files:

© Coinspect 2024 13 / 37

Config file can be specified using the command line parameter `--
config`, e.g., `./services --config config.local.toml`. The default
config file name is `config.toml`.

A sample config file includes not only sensitive information (such as the voter's
private key) but also the parameters used to customize how the script works (for
example, refresh timeouts, chain ids, start indexes, etc.). This structure is error
prone as users are forced to mix on the same file configuration parameters
required to run the script along with sensitive credentials.

Additionally, voters cloning this repository could accidentally push configuration
files with their private key because the default config file is named after
config.toml (when there is no config.LOCAL.toml). The current exceptions of
.gitignore don't protect users against this kind of mistakes, potentially exposing
their private key when pushing.

It is worth mentioning that adding a *.toml exception won't protect voters as
config.toml was previously committed and pushed into the main branch, commit
hash a71d0d3c6c068a817db229e389ab77166c9c139e on February 16th, 2023.

Recommendation

Don't use the same file to store sensitive data and configuration parameters.
Additionally, improve the private key and endpoint (API key) handling to reduce
the risk of expos.

Status

Fixed in commit 7a18b8be487663ab0c70e632497f22cced24ef60.

Private keys are now retrieved from an external file.

However, Coinspect observed that:

Minimum file system permissions are not enforced for the file containing the
private key. It is strongly suggested to add checks in the service that prevent
reading private keys from files that have overly permissive permissions.
RPC API keys could also be exposed in the configuration file, which is risky as
detailed in PSOS-003.
Private key management is still a relevant threat as mentioned in the
assessment. Continuous improvements can be made to support safer key
storage devices and key rotation policies.

© Coinspect 2024 14 / 37

PSOS-002

Adversary can force mirroring services to
stop working

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
Low
Likelihood
High

Location

indexer/cronjob/mirror.go

Description

An adversary can indefinitely halt off-chain clients from mirroring transactions,
potentially impacting the calculation of rewards.

When a client attempts to mirror a stake that has already been mirrored, the
transaction will be reverted. This will trigger an error in mirror.go:mirrorTx(),
abruptly terminating the mirroring script. As a consequence, the NextDBIndex
epoch does not get updated.

Subsequently, when the next cycle begins, the mirroring script will attempt to
mirror that same previously reverted stake, as NextDBIndex remained unchanged.
This causes the script to be trapped in a perpetual error loop.

© Coinspect 2024 15 / 37

To illustrate, here's a brief breakdown of the logic that leads to the mirroring
scripts getting stuck indefinitely:

for epoch := epochRange.start; epoch <= epochRange.end; epoch++ {
// Skip updating if indexer is behind
if c.indexerBehind(&idxState, epoch) {

logger.Debug("indexer is behind, skipping mirror")
return nil

}

logger.Debug("mirroring epoch %d", epoch)
if err := c.mirrorEpoch(epoch); err != nil {

//This error is thrown when the mirroring transaction
reverts,

//preventing the script from finishing iterating the
for loop

return err
}

}

logger.Debug("successfully mirrored epochs %d-%d", epochRange.start,
epochRange.end)

//NextDBIndex will not be updated due to early finish
//Therefore, in the next iteration, the script will attempt
//to mirror the same stake that caused the revert

if err := c.updateJobState(epochRange.end); err != nil {
return err

}

Note that:

When working in parallel with multiple mirroring clients, this issue hinders all
but one from effectively mirroring. An adversary can exploit this weakness to
force the remaining operative client into an error loop.
Any third-party with a valid _merkleProof and _stakeData can still manually
mirror the transaction on demand.

Proof of Concept

The following scenario uses two different mirroring services and prints the EVM
revert that is triggered when the second service tries to mirror. Then, it is shown
how this service does not update its index trying to mirror the transactions on the
same epoch were the revert was initially triggered.

To run this test, add the following scripts into indexer/cronjob/voting_test.go.

Run:

© Coinspect 2024 16 / 37

go test ./indexer/cronjob/ -run
"TestCoinspect_VotingWithTwoMirroringServices" -v -count=1

Output

=== RUN TestCoinspect_VotingWithTwoMirroringServices
=== RUN TestCoinspect_VotingWithTwoMirroringServices/Run_indexer_1
=== RUN TestCoinspect_VotingWithTwoMirroringServices/Run_indexer_2
=== RUN
TestCoinspect_VotingWithTwoMirroringServices/Run_voting_clients_1_and_2
=== RUN
TestCoinspect_VotingWithTwoMirroringServices/Reverts_if_two_mirroring_j
obs_mirror_the_same_Tx

Waiting 2 secs...

Runnning mCronjob1
mirroring epoch: 0
mirroring epoch: 1
mirroring epoch: 2

Waiting 2 secs...

Runnning mCronjob2
mirroring epoch: 0
Failed on Epoch: 0
mirroringContract.MirrorStake: Error: VM Exception while processing
transaction: reverted with reason string 'transaction already mirrored'

Waiting 2 secs...

Runnning mCronjob1
<nil>

Runnning mCronjob2
mirroring epoch: 0
Failed on Epoch: 0
mirroringContract.MirrorStake: Error: VM Exception while processing
transaction: reverted with reason string 'transaction already mirrored'
--- PASS: TestCoinspect_VotingWithTwoMirroringServices (10.95s)
 --- PASS:
TestCoinspect_VotingWithTwoMirroringServices/Run_indexer_1 (0.10s)
 --- PASS:
TestCoinspect_VotingWithTwoMirroringServices/Run_indexer_2 (0.12s)
 --- PASS:
TestCoinspect_VotingWithTwoMirroringServices/Run_voting_clients_1_and_2
(0.75s)
 --- PASS:
TestCoinspect_VotingWithTwoMirroringServices/Reverts_if_two_mirroring_j
obs_mirror_the_same_Tx (8.46s)
PASS
ok flare-indexer/indexer/cronjob 11.259s

© Coinspect 2024 17 / 37

Script

func TestCoinspect_VotingWithTwoMirroringServices(t *testing.T) {
now := time.Unix(1675349340, 0) // 2023-02-02 14:49:00 UTC
vCronjob1, vCronjob2, mCronjob1, mCronjob2, indexer1, indexer2,

err := createTestVotingClientsTwoMirrorings(now)
require.NoError(t, err)

t.Run("Run indexer 1", func(t *testing.T) {
err := indexer1.IndexBatch()
require.NoError(t, err)

})
t.Run("Run indexer 2", func(t *testing.T) {

err := indexer2.IndexBatch()
require.NoError(t, err)

})

t.Run("Run voting clients 1 and 2", func(t *testing.T) {
vCronjob1.time.SetNow(now)
vCronjob2.time.SetNow(now)
for i := 0; i < 10; i++ {

err := vCronjob1.Call()
require.NoError(t, err)
err = vCronjob2.Call()
require.NoError(t, err)
vCronjob1.time.AdvanceNow(30 * time.Second)
vCronjob2.time.AdvanceNow(30 * time.Second)

}
})

t.Run("Reverts if two mirroring jobs mirror the same Tx", func(t
*testing.T) {

mCronjob1.time.SetNow(now)
mCronjob1.time.AdvanceNow(10 * 30 * time.Second)

mCronjob2.time.SetNow(now)
mCronjob2.time.AdvanceNow(10 * 30 * time.Second)

fmt.Println("\nWaiting 2 secs...")
time.Sleep(2 * time.Second)
fmt.Println("\nRunnning mCronjob1")
err11 := mCronjob1.Call()
require.NoError(t, err11)

fmt.Println("\nWaiting 2 secs...")
time.Sleep(2 * time.Second)
fmt.Println("\nRunnning mCronjob2")
err2 := mCronjob2.Call()
fmt.Println(err2)

fmt.Println("\nWaiting 2 secs...")
time.Sleep(2 * time.Second)

fmt.Println("\nRunnning mCronjob1")
err12 := mCronjob1.Call()
fmt.Println(err12)
require.NoError(t, err12)

time.Sleep(2 * time.Second)

© Coinspect 2024 18 / 37

fmt.Println("\nRunnning mCronjob2")
err22 := mCronjob2.Call()
fmt.Println(err22)

})
}

Where createTestVotingClientsTwoMirrorings() is:

func createTestVotingClientsTwoMirrorings(epochStart time.Time)
(*votingCronjob, *votingCronjob, *mirrorCronJob, *mirrorCronJob,
*shared.ChainIndexerBase, *shared.ChainIndexerBase, error) {

ctx1, err :=
context.BuildTestContext(votingCronjobTestConfig(epochStart,
"flare_indexer_indexer", privateKey1))

if err != nil {
return nil, nil, nil, nil, nil, nil, err

}
cronjob1, err := NewVotingCronjob(ctx1)
if err != nil {

return nil, nil, nil, nil, nil, nil, err
}
ctx2, err :=

context.BuildTestContext(votingCronjobTestConfig(epochStart,
"flare_indexer_indexer_2", privateKey2))

if err != nil {
return nil, nil, nil, nil, nil, nil, err

}
cronjob2, err := NewVotingCronjob(ctx2)
if err != nil {

return nil, nil, nil, nil, nil, nil, err

}
mirror1, err := NewMirrorCronjob(ctx1)
if err != nil {

return nil, nil, nil, nil, nil, nil, err

}

mirror2, err := NewMirrorCronjob(ctx2)
if err != nil {

return nil, nil, nil, nil, nil, nil, err

}

indexer1 := &shared.ChainIndexerBase{
StateName: pchain.StateName,
IndexerName: "P-chain Blocks Test",
Client: testClient,
DB: ctx1.DB(),
Config: ctx1.Config().PChainIndexer,
BatchIndexer: pchain.NewPChainBatchIndexer(

ctx1, testClient, testRPCClient,

pchain.NewPChainDataTransformer(transformPChainTx),
),

}
indexer2 := &shared.ChainIndexerBase{

StateName: pchain.StateName,

© Coinspect 2024 19 / 37

IndexerName: "P-chain Blocks Test",
Client: testClient,
DB: ctx2.DB(),
Config: ctx2.Config().PChainIndexer,
BatchIndexer: pchain.NewPChainBatchIndexer(

ctx1, testClient, testRPCClient,

pchain.NewPChainDataTransformer(transformPChainTx),
),

}
return cronjob1, cronjob2, mirror1, mirror2, indexer1,

indexer2, nil
}

Recommendation

Skip mirroring transactions that were already mirrored. Improve the testing suite
to account for similar scenarios.

Status

Fixed in commit 86d532eda23569b5a6fcd384bc8ae4fbd000f3e8.

The following checks were added to prevent bubbling expected errors when
mirroring stakes:

if strings.Contains(err.Error(), "transaction already
mirrored") {

logger.Debug("tx %s already mirrored", *in.tx.TxID)
return nil

}

 if strings.Contains(err.Error(), "staking already ended") {
logger.Debug("staking already ended for tx %s",

*in.tx.TxID)
return nil

}

© Coinspect 2024 20 / 37

PSOS-003

Lack of database privilege segregation

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Low

Description

The service API and indexer currently use the same database without any privilege
restrictions. This means that if the API is compromised, an attacker could alter the
indexed information.

Such alterations could influence a voter's choice on which P-chain transactions to
mirror and also impact validator uptime information.

Recommendation

Implement a read-only database user for the service API.

Status

© Coinspect 2024 21 / 37

Fixed on commit dc637d5b6b5b9fbfeb023642ac6287e09a9e30e1.

A note recommending database segregation was added to the project's readme:

Note: We recommend that the user accessing the database is not the
same as for the indexer. The user for the services should only have
read permissions enabled!

© Coinspect 2024 22 / 37

PSOS-004

The voting service will never include
transactions from reset epochs

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Medium
Likelihood
Low

Location

indexer/cronjob/voting.go

Description

P-Chain transactions from epochs that the governance reset on the smart
contracts will never be proved by the voting service. Fixing this situation will
require manual root calculation and voting, potentially leading to omission.

The voting service retrieves the latest epoch where the root is zero, meaning that
a commitment is still required. Then, according to the transactions of the database
it calculates the root and proceeds to vote for that root on the Multisig Voting
contract. However, if the governance resets a root for a past epoch, the voting
service will never re-calculate and vote for that root as epochs are increased
sequentially:

© Coinspect 2024 23 / 37

// Last epoch that was submitted to the contract
nextEpochToSubmit := utils.Max(state.NextDBIndex,

c.epochs.first)
lastEpochToSubmit := c.epochs.getEpochIndex(now) - 1
for e := int64(nextEpochToSubmit); e <= lastEpochToSubmit; e++

{

In other words, those transactions on the P-Chain that were not mirrored before
the root was reset will require manual actions by all voters (calculating and voting
for that new root) so they have a valid proof.

It is worth noting this problem is also present in the mirroring service.
Transactions of past epochs that had their root reset and then re-committed will
never be mirrored by the service. However, they can be mirrored by the interested
party.

Proof of Concept

The following proof of concept requires some configurations on the flare-smart-
contracts test/staking2/StakeE2ETest.ts file. The account with the privateKey1
of the Go tests was assigned as the Governance when deploying the contracts on
that script:

const MOCK_GOVERNANCE = web3.eth.accounts.privateKeyToAccount(
 "0xd49743deccbccc5dc7baa8e69e5be03298da8688a15dd202e20f15d5e0e9a9fb"
);

This precondition allows testing onlyGovernance calls directly from the Go testing
suite.

Run this test with:

go test ./indexer/cronjob/ -run "TestCoinspect_VotingResetingRoot" -v -
count=1

Output

=== RUN TestCoinspect_VotingResetingRoot
=== RUN TestCoinspect_VotingResetingRoot/Run_indexer_1
=== RUN TestCoinspect_VotingResetingRoot/Run_indexer_2
=== RUN TestCoinspect_VotingResetingRoot/Run_voting_clients_1_and_2
=== RUN TestCoinspect_VotingResetingRoot/Check_merkle_roots
Root at epoch 0: [220 121 237 247 149 216 125 17 22 224 50 223 102 125
26 58 96 246 154 40 10 66 178 32 117 1 44 38 66 181 124 6]

© Coinspect 2024 24 / 37

Root at epoch 1: [41 13 236 217 84 139 98 168 214 3 69 169 136 56 111
200 75 166 188 149 72 64 8 246 54 47 147 22 14 243 229 99]
=== RUN TestCoinspect_VotingResetingRoot/Reset_root_of_Epoch_0
Waiting 2 seconds...
Root at epoch 0: [0
0 0 0 0 0]
Root at epoch 1: [41 13 236 217 84 139 98 168 214 3 69 169 136 56 111
200 75 166 188 149 72 64 8 246 54 47 147 22 14 243 229 99]
=== RUN
TestCoinspect_VotingResetingRoot/Run_voting_clients_1_and_2,_again
Waiting 2 seconds...
Root at epoch 0 After New Voting: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0]
--- PASS: TestCoinspect_VotingResetingRoot (5.74s)
 --- PASS: TestCoinspect_VotingResetingRoot/Run_indexer_1 (0.08s)
 --- PASS: TestCoinspect_VotingResetingRoot/Run_indexer_2 (0.08s)
 --- PASS:
TestCoinspect_VotingResetingRoot/Run_voting_clients_1_and_2 (0.64s)
 --- PASS: TestCoinspect_VotingResetingRoot/Check_merkle_roots
(0.01s)
 --- PASS: TestCoinspect_VotingResetingRoot/Reset_root_of_Epoch_0
(2.09s)
 --- PASS:
TestCoinspect_VotingResetingRoot/Run_voting_clients_1_and_2,_again
(2.09s)
PASS
ok flare-indexer/indexer/cronjob 6.072s

Test

func TestCoinspect_VotingResetingRoot(t *testing.T) {
now := time.Unix(1675349340, 0) // 2023-02-02 14:49:00 UTC
vCronjob1, vCronjob2, _, indexer1, indexer2, err :=

createTestVotingClients(now)
require.NoError(t, err)

txOpts, err := TransactOptsFromPrivateKey(privateKey1, 31337)
require.NoError(t, err)

t.Run("Run indexer 1", func(t *testing.T) {
err := indexer1.IndexBatch()
require.NoError(t, err)

})
t.Run("Run indexer 2", func(t *testing.T) {

err := indexer2.IndexBatch()
require.NoError(t, err)

})

t.Run("Run voting clients 1 and 2", func(t *testing.T) {
vCronjob1.time.SetNow(now)
vCronjob2.time.SetNow(now)
for i := 0; i < 10; i++ {

err := vCronjob1.Call()
require.NoError(t, err)
err = vCronjob2.Call()
require.NoError(t, err)

© Coinspect 2024 25 / 37

vCronjob1.time.AdvanceNow(30 * time.Second)
vCronjob2.time.AdvanceNow(30 * time.Second)

}
})
t.Run("Check merkle roots", func(t *testing.T) {

root, err :=
getMerkleRootFromContract(vCronjob1.votingContract, 0)

require.NoError(t, err)
fmt.Println("Root at epoch 0:", root)

root_1, err := getMerkleRootFromContract(vCronjob1.votingContract, 1)
require.NoError(t, err)
fmt.Println("Root at epoch 1:", root_1)

})

t.Run("Reset root of Epoch 0", func(t *testing.T) {
vCronjob1.votingContract.ResetVoting(txOpts,

big.NewInt(0))

fmt.Println("Waiting 2 seconds...")
time.Sleep(2 * time.Second)

root, err := getMerkleRootFromContract(vCronjob1.votingContract, 0)
require.NoError(t, err)
fmt.Println("Root at epoch 0:", root)
root_1, err :=

getMerkleRootFromContract(vCronjob1.votingContract, 1)
require.NoError(t, err)
fmt.Println("Root at epoch 1:", root_1)

})

t.Run("Run voting clients 1 and 2, again", func(t *testing.T) {
vCronjob1.time.SetNow(now)
vCronjob2.time.SetNow(now)
for i := 0; i < 10; i++ {

err := vCronjob1.Call()
require.NoError(t, err)
err = vCronjob2.Call()
require.NoError(t, err)
vCronjob1.time.AdvanceNow(10 * time.Second)
vCronjob2.time.AdvanceNow(10 * time.Second)

}

fmt.Println("Waiting 2 seconds...")
time.Sleep(2 * time.Second)

root, err := getMerkleRootFromContract(vCronjob1.votingContract, 0)
require.NoError(t, err)
fmt.Println("Root at epoch 0 After New Voting:", root)

})
}

Recommendation

© Coinspect 2024 26 / 37

Handle potential merkle root resets in the voting script. This might require
tweaking the voting smart contract to report the epochs ids where the voting was
reset.

Status

Fixed on commit e4811f18f130c5199b865d3bb99a461e5ddf993f.

Bot operators now can start running the script from a particular epoch by using the
command line options -reset-voting and -reset-mirroring.

© Coinspect 2024 27 / 37

PSOS-005

Script will attempt to mirror epochs twice

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

indexer/cronjob/mirror.go

Description

The epochRange.end of a range will be processed twice. In the event of processing
a range of length 1, it could imply sending a duplicate mirror transaction and
thereby a waste of gas.

The for loop below processes every epoch in the range, including epochRange.end.
Then, it updates jobState.NextDBIndex in the updateJobState function with the
epochRange.end value.

for epoch := epochRange.start; epoch <= epochRange.end; epoch++ {
...

}

...

if err := c.updateJobState(epochRange.end); err != nil {

© Coinspect 2024 28 / 37

return err
}

In the next cycle, it sets the start epoch value (epochRange.start) to be equal to
jobState.NextDBIndex. This is, the value of the epochRange.end last processed.

func (c *mirrorCronJob) getStartEpoch() (int64, error) {
jobState, err := database.FetchState(c.db, mirrorStateName)
if err != nil {

return 0, err
}

return int64(utils.Max(jobState.NextDBIndex, c.epochs.first)), nil
}

Recommendation

The updateJobState function should set jobState.NextDBIndex as epoch+1.
Otherwise, do not include epochRange.end in the for loop by removing the = from
the <= operator.

Status

Fixed on commit 9e3655b5fa50cb81280dcc53f514c733dd2c7c6f.

The updateJobState function now sets jobState.NextDBIndex as epoch+1.

© Coinspect 2024 29 / 37

PSOS-006

Key contextual time-based variables could be
constant

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Description

A mismatch between the actual contextual variables (start timestamp and epoch
duration) and the configured by users will disarrange the epoch index calculation
disrupting voting and mirroring.

Currently, users need to setup on the configuration file the first epoch start
timestamp and the epoch duration. However, those variables are immutable and
known from before, according to the PChainStakeMirrorMultiSigVoting contract:

 // immutable settings
 uint256 internal immutable firstEpochStartTs; // start timestamp
of the first epoch instance
 uint256 internal immutable epochDurationSeconds; // duration of an
epoch instance

© Coinspect 2024 30 / 37

type EpochConfig struct {
Period time.Duration `toml:"period" envconfig:"EPOCH_PERIOD"`
Start utils.Timestamp `toml:"start" envconfig:"EPOCH_TIME"`
First uint64 `toml:"first" envconfig:"EPOCH_FIRST"`

}

This structure is error prone and the services might behave unexpectedly in the
event of using different values than the ones submitted to the smart contracts.

Recommendation

Use constant values instead of configurable ones. Alternatively, make the contract
variables public and cache their return values when starting the off-chain services.

Status

Fixed on commit f935d10cb712ebb800e9b8ee2142a1e2a4345e73.

Contextual values are now retrieved from the deployed contracts.

© Coinspect 2024 31 / 37

PSOS-007

Service API disclosing internal error
information

Status

Solved

Resolution

Fixed

Risk
None

Impact
Recommendation
Likelihood
_

Location

services/utils/router.go

Description

The service API discloses internal errors in the HTTP responses. Exposing such
internal details aids adversaries in gathering information about the server,
database, or software. This can subsequently be exploited to target and
compromise the infrastructure.

For instance, when sending a POST request to /exports/transactions with the
following request body:

{
 "address": "string",
 "limit": 0,
 "nodeId": "string",
 "offset": 0,

© Coinspect 2024 32 / 37

 "time": "2023-09-21T17:50:00.785Z"
}

The server returns internal information about the database structure:

Error 3065 (HY000): Expression #1 of ORDER BY clause is not in SELECT
list, references column 'flare_indexer_services.p_chain_txes.id' which
is not in SELECT list; this is incompatible with DISTINCT

Recommendation

Return generic error messages instead. If desired, log error these internal error
messages.

Status

Fixed on a37bf39e2c6d047806438c043b4a5b4c5b8709ba.

Logs now return a generic error message.

© Coinspect 2024 33 / 37

Disclaimer

The information presented in this document is provided “as is” and without warranty.
Security Audits are a “point in time” analysis, and as such, it's possible that something
in scope may have changed since the tasks reflected in this report were executed. This
report shouldn't be considered a perfect representation of the risks threatening the
analyzed systems and/or applications in scope.

© Coinspect 2024 34 / 37

File hashes

File hashes of the commit ee0632512bd70d12e2b2738df9321a23e8b5e394, of September
11th, 2023.

375c3926b7ad6023b8dd1578272aef846cbcf00e1dd1f47033b941fb018fae4a ./database/methods.go
9b3ed5a86f896c3cf041b3f708fc43849a5148e0c0bbce55f0d4f4e511897ca6 ./database/pchain_queries.go
bf6a7e0d6d0cfdb258f5e3beaf4640293df1ece19e1e135be05337166ad95c7e ./database/types.go
f53e5e47b484dacc3b871c540a4d6b355b8558a17987b325ed2acbaee9e56129 ./database/queries.go
6ae416e0e136b7fd307df12dae3b4888b0e0ab75b51fe55ff68df03d39a2ae0c ./database/entity_utils.go
563b5e02ac69f438048b37cd10caec75510e8c1a3475a479362d618c5c6bc992 ./database/pchain_entities.go
a5500b068d54b1a93d475d030dc36661f9d81b46d43e9c479296ba0569ae0c35 ./database/creators.go
72cce777dc9a5d8052c7d944794181f1045261d0f9f478fc4058ff789c25788d ./database/utils.go
876def176dae9f05e10ea5a8ed4c272610f2c6db8c8e24e7760b8a161653a865 ./database/cronjob_entities.go
dada26cde92c0a6d5602c36ac09376edba17962adf043f4f054563f4f8380512 ./database/testing.go
f8f26b72e85663ad4be568608a9e2bf526274e047abebcfffca19c6827c54d04 ./database/entities.go
bd97335d117cc2beb1c941901b4c16ac230b81144f978aa7f808db882d75b551 ./logger/logger.go
14ec7310214a5301e11a5ca8024444000a9c37fddf07e67de8a2d0377f3eb429 ./logger/colors.go
f1c6492c62ad8cbf1856240a3109b0952cb4320d1da566319275adda2882902f ./config/config.go
086eb26af541dc54c2f3aa14dc01c374369df492542fe1e72b405d04a45a878b ./config/callback.go
6302a2fc084f1ce3fed796efb8f7cb4133145f35789bab369a374b675e689482 ./utils/encoding.go
807ac0abd82bc379b3ff69f2f5f247a1be4ccd353b71f463f3ea5166e56b4a55 ./utils/cache_test.go
b454a74beb7b5e6e8da10415a2d9f3a0ca8b8579a3c611653ecdaf4ce7b087ca ./utils/address.go
c4ed82ac652c1a8b79f2e015ab58cc8b275ccbd72b527f0fa6659aee74b0e2e0 ./utils/time.go
17ad9f76d72211fe22bba335619092c49ecc1b6cc984f32c7990bffd0a25a006 ./utils/contracts/voting/autogen.go
cd6c63c61f6e77da1f05eecb6e8cee0caeb8ea4403dbb1968c7015aaa466cbbf ./utils/contracts/voting/voting.go
b474696022be4eb2e17018de0aa2e65603d5180328d090cfeeec562bf45dc60b
./utils/contracts/mirroring/autogen.go
e41fbc618f8f260ee0213871ae6fe0d1fd0c754d19976d13fea40ab41b4c7398
./utils/contracts/mirroring/mirroring.go
ee3ac541007429737631c0fa9219c03f1f725949163560993e6d32cdf5dbcdcc ./utils/cache.go
1519d2ec178ecb29d6f6daa39da04bd35453d27729d8ed0808c9d28bc24b394a ./utils/merkle/merkle.go
6ea34b8f7aa64fa043c93dd5572df50e4066e03072e7c0d78e493e81bb34fcd4 ./utils/merkle/merkle_test.go
b175e51239ebd04b494ad6cc0dd3b342c98bc2e6a7f73af57097775b93d31e37
./utils/chain/indexer_client_test.go
72b91b0f56cd4f8e796eb0b61ab1f58b171804f214561631c518dadc71b07de3 ./utils/chain/indexer_client.go
e52abaf1facdbf40db6b9a93f298d64ebde65228a72f9c7dac144d41a562ecbc ./utils/chain/client.go
5973141db5314b3ef2190f6f50baddd8020a791859a62fa1b9497e0901522141 ./utils/chain/p_chain_rpc_client.go
956415f58c14219f09a5283dd6a6f5291a7dce1d6fc1e09c9cf81be276d70dff
./utils/chain/p_chain_rpc_client_test.go
bc185a0231eea05846d111dd3242e74905f0b65833864a7e88a8619d2d710ff3 ./utils/chain/uptime_client.go
94a22a25ae5875ff7772d5b1cbbc507c95e8e8e76aca0bb7838ebc2ba56022fb ./utils/chain/uptime_client_test.go
8bed42e03d7fd8202ba83f4e2e9d0c066414bcc01111b68cd31deea4468edb72 ./utils/chain/testing.go
d6d7c84ee5ce4d3f98c46ccba5cdc08766a97c83882a145a7e598a324557b584 ./utils/url.go
62bfc0b2de4771984c7295ba7ad0d5f74ee97608b3c9017f676f9e458a8221aa ./utils/toml.go
98e287b61a63836dd79db06e7ca055e0d744001ef102b26c174757ecdb03a0e1 ./utils/math.go
827d97a9780269460088e0f85541db22bbdf1b09a266f79dfed2dcf50c3ec916 ./utils/errors.go
294dd66551b7b0a81fc4fd9822271f75e23c5f24099f0d33139a6dee736d9ea8 ./utils/structures.go
0feff438b4a2bc69703b48b9d695791eab08d7406c4405c6f3ed3f2bb7b64073 ./indexer/pchain/indexer_test.go
df0f42c56848a9545efce3969bfc45bcbb82e28a7687197683267f02b8acd037 ./indexer/pchain/batch_indexer.go
f478823bfc2af47f06599b39003d6b035ab75d8ff7880d6625a9a2874eb9a73a ./indexer/pchain/entity_creator.go
ef5cb73bb333324f1c5f247a7604c6f31dc2a83e17403d866e98f66802908735 ./indexer/pchain/migrations.go
14e4d401b1660dd6d47d224197ff990d2c52a46f5d304e0ddf045b8a2a9ad56e ./indexer/pchain/in_updater.go
8b1a4ca5d238bcf878465ea5fb724a754321f35722236d471d1fcb71579927b4 ./indexer/pchain/indexer.go
8801701b4c9e9f746fa288b06e4815916ecde11bc24d7d3cd59efc5d5578699e ./indexer/pchain/utils.go
9cde08026adc0ff0dbcb7618d10acadc37e5fba5ac6f76f36f99866a2549e6b8 ./indexer/pchain/main_test.go
2ca728fc82e9829979d2600197f4bf9973a47d89b56a6efe59bcb4b056483c53 ./indexer/migrations/container.go
9ff32583b70ba35a045a607677fc0b4da268519b3dc07a8e9ea18ae566cf8cdc ./indexer/context/context.go

© Coinspect 2024 35 / 37

014b96b073fe35d99c673dd8d9a7cd68f097204099eb38e3a00a0c42af2826f6 ./indexer/context/testing.go
e81268e5e6f2120373047b8c7bfe08f1be67e4c46f5d80720e6d9e3f5e2b31ca ./indexer/config/config.go
1dab200cfecdb728b8e78aa4c8d991c61f4bc7ec15d11274034a57fe61184516 ./indexer/runner/runner.go
6660cb5b40f6d5caa4fbfa6d70c6934ec33b56d74b54476da76423d01188e946 ./indexer/shared/types.go
6023c662a56a9f659bab53b02450f613582b03b9cd483c38b4b28a272ab1af9a ./indexer/shared/indexer_metrics.go
6566fa4ca799a51ad70ee5944d7c6617f780f86114f244f7abbedf722a5c97c9 ./indexer/shared/inout_indexer.go
749230f955d75e75c3f8940a7e7f36b8fab5a7bcb9bbac3da42ef735143f7574 ./indexer/shared/base_tx.go
03804504cd4119415caa459e2081115ad25f603859fbba5a50bab9612b75eba3 ./indexer/shared/in_updater.go
913e50a79e6297a0b9fe8ba5811050d22e031b232e14a2fd1607210ba27b0bbe ./indexer/shared/indexer.go
6ed4fde06d204227e4689ce4d6dbc1b250648409987c9c77b268ccd00fa4d5e9 ./indexer/cronjob/mirror.go
ebf112693eebbcbea43cb89e4e5fe2762ce14030dc0ceddf7ec7167440bf0e79 ./indexer/cronjob/uptime_voting.go
3768301b949bbeb944818d8ba0bcb8360e249cf91905b27eb4e12171a15f8912 ./indexer/cronjob/voting.go
bafb6dd54bf84844eb7e667560b0a55f600a8e04b18d3ae2581eccad031ccfce ./indexer/cronjob/migrations.go
c91fa8eb9c44753acae45fbb02203dfb246969d6c4a86142762abdc581b7b527 ./indexer/cronjob/utils.go
d8f743b36b9712dbf5138a19e0a5fae3a0c3e25ab769889b0b3e86b4cfe8e938
./indexer/cronjob/uptime_voting_test.go
42ea489b4248d0e0cb973df8763659da28dde5852929bd5f05995288bef6aef9 ./indexer/cronjob/uptime_test.go
a47145207e1d589c9a177a19b4ce53c55d47a23b1ef12b5bc727e48b033250d8 ./indexer/cronjob/uptime.go
af0001daecca65b2973ea3bfa3bed4a2f9d6de1f5c6ff0ed13b52ef9104bfa04 ./indexer/cronjob/voting_test.go
8eaa49996b48f226ef3a37524ad1389a00da0a06148e04c103db4dd6c06d606e ./indexer/cronjob/cronjob.go
106567e604abb67607f7e05d0a24ac2481ef55432218cd93029dcf772572c24c ./indexer/cronjob/main_test.go
fe0de45a263d08352a42fb986956cdb25746437b607b0b5b7c416ba2804acd74 ./indexer/main/indexer.go
d5b055aa8cec51c87acd5cd7d892b3f0023600b3fdba5a3765982f85d806ea1d ./services/context/context.go
ba0efae2c0ca55dd794113f8f134ef24c75a34c954acd1b7fb0d6596d212e30e ./services/context/testing.go
632a3d9f0a6c17d0a0bd82100076e3bd970e528aafc2fb3337a5fc1cb28cc6ef ./services/config/config.go
8233cc62d0d4782710ffe1ef2eb15a8ca911c036068e5a5a828e10b37fc47e87 ./services/utils/encoding.go
df96990da592f11d24c191364bc75f2ae8d38e4c9f92fdbc68a6bcd04544e00e ./services/utils/services.go
6ebbb8792ffe8061a9aced38feec0e613b52b8c96123a208959606e5471d560c ./services/utils/validate.go
ee20cae9ad5d385cb0623ec3f5acd7b2a65b75223c83d7465f3bc92ca70b3005 ./services/utils/testing.go
0fd449aef232097a67e27606d1d781ee9c6b7d180cd4d28546d179983823734e ./services/utils/router.go
f8508962c659930780eced801b50cc5af7686ab8d465331e3b996a3323e6d247 ./services/api/pchain.go
4c1f2895e46803a7af18040862355d2cab140a8a5913366ec7532b4f34306b2b ./services/api/attestation.go
303dc6dc816fc713822ff4c17c88fd6f0bfa103c4eeb38597a35a7e007b8fa9b ./services/api/shared.go
6e0c1a13c6c51b72fb26d66551e8ed4c34c0f6432395d7ace3bd8ccf19d04980 ./services/main/services.go
3b007dfde6aabc2a0a21f5261be1c00203533189aa90fe0a7c7c5f15e0aff7b2 ./services/routes/query.go
d43b9bae78f88fe14ccd88df1004c8bb68bf4095bfd1c2c7eb52f4b974da9bab ./services/routes/query_test.go
6acacd74704de91ddf89adbe4d16773e7651c7aac58c75b99ab61a12ab443656 ./services/routes/staking.go
31132d4ecf58a332079c52e6d7e0f1b764457746e32df82bc210036edd0d1aae ./services/routes/types.go
3d0691a28399fbc7edd126788a77a9b8a50b2867750952883d99482688ecb7e5 ./services/routes/transactions.go
1d091cde41022f072befbb7577387508680063fe20193e427f53a22774b31c04 ./services/routes/transfer.go
efbafb47668da5cc51a67690e03d8c2fa1be76994bde3d8c8e3406bb50009f8c ./services/routes/main_test.go

File hashes of the commit c38fa4913cfd529a764ced791e111e22f5217c7f, of September
20th, 2023.

375c3926b7ad6023b8dd1578272aef846cbcf00e1dd1f47033b941fb018fae4a ./database/methods.go
58bab7915fd8bd0af8398aa7df4531f39c322f87052401013e8e730148978267 ./database/pchain_queries.go
bf6a7e0d6d0cfdb258f5e3beaf4640293df1ece19e1e135be05337166ad95c7e ./database/types.go
f53e5e47b484dacc3b871c540a4d6b355b8558a17987b325ed2acbaee9e56129 ./database/queries.go
6ae416e0e136b7fd307df12dae3b4888b0e0ab75b51fe55ff68df03d39a2ae0c ./database/entity_utils.go
563b5e02ac69f438048b37cd10caec75510e8c1a3475a479362d618c5c6bc992 ./database/pchain_entities.go
a5500b068d54b1a93d475d030dc36661f9d81b46d43e9c479296ba0569ae0c35 ./database/creators.go
72cce777dc9a5d8052c7d944794181f1045261d0f9f478fc4058ff789c25788d ./database/utils.go
876def176dae9f05e10ea5a8ed4c272610f2c6db8c8e24e7760b8a161653a865 ./database/cronjob_entities.go
dada26cde92c0a6d5602c36ac09376edba17962adf043f4f054563f4f8380512 ./database/testing.go
f8f26b72e85663ad4be568608a9e2bf526274e047abebcfffca19c6827c54d04 ./database/entities.go
bd97335d117cc2beb1c941901b4c16ac230b81144f978aa7f808db882d75b551 ./logger/logger.go
14ec7310214a5301e11a5ca8024444000a9c37fddf07e67de8a2d0377f3eb429 ./logger/colors.go
25a7478144737775a5bcbfb88aafe58d665c724788bf1969d5824f7606f8adf4 ./config/config.go
086eb26af541dc54c2f3aa14dc01c374369df492542fe1e72b405d04a45a878b ./config/callback.go
6302a2fc084f1ce3fed796efb8f7cb4133145f35789bab369a374b675e689482 ./utils/encoding.go
807ac0abd82bc379b3ff69f2f5f247a1be4ccd353b71f463f3ea5166e56b4a55 ./utils/cache_test.go
c4ed82ac652c1a8b79f2e015ab58cc8b275ccbd72b527f0fa6659aee74b0e2e0 ./utils/time.go
17ad9f76d72211fe22bba335619092c49ecc1b6cc984f32c7990bffd0a25a006 ./utils/contracts/voting/autogen.go
cd6c63c61f6e77da1f05eecb6e8cee0caeb8ea4403dbb1968c7015aaa466cbbf ./utils/contracts/voting/voting.go
c78f5d7dda7a53ffed8f6bdc116545b502a99e8347ccf9fc24ce52d4b2564141

© Coinspect 2024 36 / 37

./utils/contracts/addresses/autogen.go
4169db264b0c08e2629b3e5caa2bf7a252b6eb9fbe27fbfd587a067427e42eb9
./utils/contracts/addresses/binder.go
b474696022be4eb2e17018de0aa2e65603d5180328d090cfeeec562bf45dc60b
./utils/contracts/mirroring/autogen.go
e41fbc618f8f260ee0213871ae6fe0d1fd0c754d19976d13fea40ab41b4c7398
./utils/contracts/mirroring/mirroring.go
ee3ac541007429737631c0fa9219c03f1f725949163560993e6d32cdf5dbcdcc ./utils/cache.go
1519d2ec178ecb29d6f6daa39da04bd35453d27729d8ed0808c9d28bc24b394a ./utils/merkle/merkle.go
6ea34b8f7aa64fa043c93dd5572df50e4066e03072e7c0d78e493e81bb34fcd4 ./utils/merkle/merkle_test.go
2133684912c3e554344b7694f76686ab2f32d05cf71a1f87537bc594af4fe763
./utils/chain/indexer_client_test.go
8dabe0db49cc194b61817d1e22cb8f624305b3d31d60dc28a6f22e6efdb76d9f ./utils/chain/address.go
72b91b0f56cd4f8e796eb0b61ab1f58b171804f214561631c518dadc71b07de3 ./utils/chain/indexer_client.go
e52abaf1facdbf40db6b9a93f298d64ebde65228a72f9c7dac144d41a562ecbc ./utils/chain/client.go
5973141db5314b3ef2190f6f50baddd8020a791859a62fa1b9497e0901522141 ./utils/chain/p_chain_rpc_client.go
956415f58c14219f09a5283dd6a6f5291a7dce1d6fc1e09c9cf81be276d70dff
./utils/chain/p_chain_rpc_client_test.go
bc185a0231eea05846d111dd3242e74905f0b65833864a7e88a8619d2d710ff3 ./utils/chain/uptime_client.go
1c12d9c8c0a438dce8a52f20007e7e4fa99693ef8d893174a8617bc2793ddd8e ./utils/chain/uptime_client_test.go
8bed42e03d7fd8202ba83f4e2e9d0c066414bcc01111b68cd31deea4468edb72 ./utils/chain/testing.go
2957afdea1ecedb3a9228b39d91ee25211e66109e042d982eb1ee9e118404f08 ./utils/staking/epochs.go
c601f256c0cb20bd7eddf263ca2d513af492f3fddd5a3329c3a5666efef3809e ./utils/staking/utils.go
d6d7c84ee5ce4d3f98c46ccba5cdc08766a97c83882a145a7e598a324557b584 ./utils/url.go
62bfc0b2de4771984c7295ba7ad0d5f74ee97608b3c9017f676f9e458a8221aa ./utils/toml.go
98e287b61a63836dd79db06e7ca055e0d744001ef102b26c174757ecdb03a0e1 ./utils/math.go
827d97a9780269460088e0f85541db22bbdf1b09a266f79dfed2dcf50c3ec916 ./utils/errors.go
294dd66551b7b0a81fc4fd9822271f75e23c5f24099f0d33139a6dee736d9ea8 ./utils/structures.go
05287575644134c4cc503c0f5c767f66d3095a849e73dff89852439f1addcb2d ./indexer/pchain/indexer_test.go
df0f42c56848a9545efce3969bfc45bcbb82e28a7687197683267f02b8acd037 ./indexer/pchain/batch_indexer.go
f478823bfc2af47f06599b39003d6b035ab75d8ff7880d6625a9a2874eb9a73a ./indexer/pchain/entity_creator.go
ef5cb73bb333324f1c5f247a7604c6f31dc2a83e17403d866e98f66802908735 ./indexer/pchain/migrations.go
14e4d401b1660dd6d47d224197ff990d2c52a46f5d304e0ddf045b8a2a9ad56e ./indexer/pchain/in_updater.go
8b1a4ca5d238bcf878465ea5fb724a754321f35722236d471d1fcb71579927b4 ./indexer/pchain/indexer.go
8801701b4c9e9f746fa288b06e4815916ecde11bc24d7d3cd59efc5d5578699e ./indexer/pchain/utils.go
f67d41b2f28914ae2802b9b74200240ee714bca5d4d85b939be9dcc3a84dad80 ./indexer/pchain/main_test.go
2ca728fc82e9829979d2600197f4bf9973a47d89b56a6efe59bcb4b056483c53 ./indexer/migrations/container.go
9ff32583b70ba35a045a607677fc0b4da268519b3dc07a8e9ea18ae566cf8cdc ./indexer/context/context.go
014b96b073fe35d99c673dd8d9a7cd68f097204099eb38e3a00a0c42af2826f6 ./indexer/context/testing.go
d4cd97b71e23efedba10a6111608c04a8edc0a87a49661b8ba21acd5b8e1aa84 ./indexer/config/config.go
1dab200cfecdb728b8e78aa4c8d991c61f4bc7ec15d11274034a57fe61184516 ./indexer/runner/runner.go
6660cb5b40f6d5caa4fbfa6d70c6934ec33b56d74b54476da76423d01188e946 ./indexer/shared/types.go
6023c662a56a9f659bab53b02450f613582b03b9cd483c38b4b28a272ab1af9a ./indexer/shared/indexer_metrics.go
6566fa4ca799a51ad70ee5944d7c6617f780f86114f244f7abbedf722a5c97c9 ./indexer/shared/inout_indexer.go
d207f31f9b320450427696c33453020d7749e6b527ffd74c682652b4461aed1f ./indexer/shared/base_tx.go
03804504cd4119415caa459e2081115ad25f603859fbba5a50bab9612b75eba3 ./indexer/shared/in_updater.go
913e50a79e6297a0b9fe8ba5811050d22e031b232e14a2fd1607210ba27b0bbe ./indexer/shared/indexer.go
85e7432f2c1123ab3fd0be10e1379987f472ab1f582c787bf4f22f86dd94a434 ./indexer/cronjob/mirror.go
5fa49f501112952babd06045aec7a4eb8705a897b810d445dd8782025ffac8f4 ./indexer/cronjob/mirror_test.go
6a168b2e02994b1d0a1f15265d78d6c259cc30533e5e061eba42fef56b514119
./indexer/cronjob/voting_integration_test.go
567da2348064e2caabde0b170dfb7b8121a6a462e4217cc69a3349032a7c0a98 ./indexer/cronjob/uptime_voting.go
dac2892645b9bc5b230334717e00bdcf4686948f1dab7155caa4b56bf79b5395 ./indexer/cronjob/voting.go
bafb6dd54bf84844eb7e667560b0a55f600a8e04b18d3ae2581eccad031ccfce ./indexer/cronjob/migrations.go
8efc41678532ad7d8bb2da4eb0118b03ad6c792c3d2f8483cfd3696bb10e98e1 ./indexer/cronjob/mirror_stubs.go
7495f3028a309743286730f4c5ffc1e257e67119f3eb2cffb87359a6f2dc5543 ./indexer/cronjob/utils.go
e37596f9e7cea07dc21fa8da1d3874bc83119d5ffcc735120782783def20f3b2
./indexer/cronjob/uptime_voting_test.go
1ebe02289f3b4cc07acd367659100ab2e34b86ece9b33913223c57c64e6a65d3 ./indexer/cronjob/uptime_test.go
dd5225148effdf57745cccd310b661bb17305926e02c5da42f028cf6c1b491f0 ./indexer/cronjob/voting_stubs.go
a47145207e1d589c9a177a19b4ce53c55d47a23b1ef12b5bc727e48b033250d8 ./indexer/cronjob/uptime.go
8366d6c1ef091150ea027da681e172c57d94716ff3f14d108a85584236352bf0 ./indexer/cronjob/voting_test.go
4bb6c72dee6a1e0eaab241a9d6a31bfc2151008bccfcc6ac2e7e596ccefc8a1b ./indexer/cronjob/cronjob.go
0d1222445fade1aaa536097b3360aee7fed43465f53eb98a6af721f622f96c72 ./indexer/cronjob/main_test.go
fe0de45a263d08352a42fb986956cdb25746437b607b0b5b7c416ba2804acd74 ./indexer/main/indexer.go
d5b055aa8cec51c87acd5cd7d892b3f0023600b3fdba5a3765982f85d806ea1d ./services/context/context.go
ba0efae2c0ca55dd794113f8f134ef24c75a34c954acd1b7fb0d6596d212e30e ./services/context/testing.go
45cd6ce6b49e56d9abe37426270d2aa61e994a3f15e3929bfa8c5fcf06af604d ./services/config/config.go
daecef5f08fdfac028a8e990bcd24e6271d62e83aa428652a5bb7710610ec206 ./services/utils/encoding.go

© Coinspect 2024 37 / 37

df96990da592f11d24c191364bc75f2ae8d38e4c9f92fdbc68a6bcd04544e00e ./services/utils/services.go
6ebbb8792ffe8061a9aced38feec0e613b52b8c96123a208959606e5471d560c ./services/utils/validate.go
ee20cae9ad5d385cb0623ec3f5acd7b2a65b75223c83d7465f3bc92ca70b3005 ./services/utils/testing.go
22813667ea76d2a8b2dac3d1bf0c8c65ce30c7180e4f7d8bb2f262d8b72aea13 ./services/utils/router.go
f8508962c659930780eced801b50cc5af7686ab8d465331e3b996a3323e6d247 ./services/api/pchain.go
4c1f2895e46803a7af18040862355d2cab140a8a5913366ec7532b4f34306b2b ./services/api/attestation.go
303dc6dc816fc713822ff4c17c88fd6f0bfa103c4eeb38597a35a7e007b8fa9b ./services/api/shared.go
ead2c1d2cecb0acbb01d939f372b5aeba30500bb657056054fb4674a07e483e6 ./services/main/services.go
3b007dfde6aabc2a0a21f5261be1c00203533189aa90fe0a7c7c5f15e0aff7b2 ./services/routes/query.go
4d05d06931ca7c145898a6d9e1052f133faeb6feb0ca5c8395ab5c7e1fde8a88 ./services/routes/query_test.go
6ff8ef94ac1e8c959f2f183922381a8a7348383d97d319e09c530dc39d7aa8e4 ./services/routes/staking.go
31132d4ecf58a332079c52e6d7e0f1b764457746e32df82bc210036edd0d1aae ./services/routes/types.go
5790e734cdf1f6a8bcaede7fb93b082f151dfdddc9740bd584ec7a9bbcbab2ab ./services/routes/mirroring.go
3d0691a28399fbc7edd126788a77a9b8a50b2867750952883d99482688ecb7e5 ./services/routes/transactions.go
bc77c0080b451bb826f4b4aab2d24f4ef6f1d732822d37bd785906c3337b26fb ./services/routes/transfer.go
d5f92ebca70efe65baf0861c6f3751d889e5208d6644379d4170785dea5a8783 ./services/routes/mirroring_test.go
aca99b7167b536c182413a7e36a6498e25f0d8c69c1267b0d422d1ed7f298c77 ./services/routes/main_test.go

