
Flare
Attestation Suite

Fixes Review

© Coinspect 2024 1 / 36

Attestation Suite
Security Assessment

Version: v240220 Prepared for: Flare January 2024

Security Assessment

1. Executive Summary

2.2 Findings where caution is advised

2.3 Solved issues & recommendations

3. Scope

3.1 Fixes review

4 Assessment

4.1 Security assumptions

4.2 Decentralization

4.3 Code quality

4.5 Testing

© Coinspect 2024 2 / 36

5. Detailed Findings

ATC-22 - EVMTransaction specification allows rugpulls to
appear legitimate

ATC-28 - Scammers can trick users into sending
payments that they can denounce as non-existent

ATC-29 - Limited tests for MCC's transaction attestation

ATC-23 - Legacy transactions result in wasted gas

ATC-26 - Consensus might never be reached

ATC-30 - Proof server will eventually halt due to ever-
growing cache

ATC-25 - Attackers can perform exhaustive search on
passwords

ATC-27 - Missing members in the EVMTransaction
attestation response

ATC-31 - Users are led to errors by different responses in
testnet and mainnet

6. Disclaimer

© Coinspect 2024 3 / 36

1. Executive Summary

In December 2023, Flare engaged Coinspect to perform a source code review of the
Attestation Suite. The objective of the project was to evaluate the security of the off-
chain components of the system, critical for the correct working of the attestation
protocol.

The Attestation Suite as a whole is a set of off-chain programs, contracts and
consensus code which aim to feed the Flare blockchain with facts about external
chains. Coinspect analyzed risks arising from the codebase itself and also from the
design, documentation and expected usage of the system. Operational risks and other
concerns not directly related to the codebase, but relevant to the safety of the system,
are outlined in the Assessment section of this report.

Solved Caution Advised Resolution Pending

High

2
High

0
High

0

Medium

3
Medium

1
Medium

0

Low

1
Low

1
Low

0

No Risk

1
No Risk

0
No Risk

0

Total

7
Total

2
Total

0

During the review, 2 high-risk issues (ATC-22 and ATC-28) were found in the highest
priority target: the attestations' specifications. These issues could impact users by

https://coinspect.com/

© Coinspect 2024 4 / 36

facilitating scams. Another issue, ATC-29, describes how the testing approach is
insufficient to ensure the correct implementation of current and future features.

Several other issues were discovered: ATC-26 describes how consensus might never be
reached in certain conditions, ATC-30 demonstrates how the verifier servers will all
eventually halt due to an ever-growing cache. ATC-25, ATC-27 and ATC-31 are low-
severity issues that describe improvements in password handling and attestations
responses.

© Coinspect 2024 5 / 36

2. Summary of Findings

2.2 Findings where caution is advised

These issues have been addressed, but their risks have not been fully mitigated. Any
future changes to the codebase should be carefully evaluated to avoid exacerbating the
issues or increasing their probability.

Findings with a risk of None pose no threat, but document an implicit assumption which
must be taken into account. Once acknowledged, these are considered solved.

Id Title Risk

ATC-29 Limited tests for MCC's transaction attestation Medium

ATC-25 Attackers can perform exhaustive search on passwords Low

2.3 Solved issues & recommendations

These issues have been fully fixed or represent recommendations that could improve
the long-term security posture of the project.

Id Title Risk

ATC-22 EVMTransaction specification allows rugpulls to appear
legitimate High

ATC-28
Scammers can trick users into sending payments that they

can denounce as non-existent High

ATC-23 Legacy transactions result in wasted gas Medium

© Coinspect 2024 6 / 36

ATC-26 Consensus might never be reached Medium

ATC-30 Proof server will eventually halt due to ever-growing cache Medium

ATC-31
Users are led to errors by different responses in testnet

and mainnet Low

ATC-27
Missing members in the EVMTransaction attestation

response None

© Coinspect 2024 7 / 36

3. Scope

The scope of the review was limited to the off-chain components of the following five
repositories at a fixed commit:

State Connector Protocol at commit f51f0610e3ee824647dd36ad8948ff80d41c454a
Multichain Client Library at commit ca83b7555f77c6d00eebf1a43b2ff0e4f82101c2
Attestation client at commit 44d7c631dcbe16e79568a8f6872169450a80a098
Doge indexer at commit 0233408613efc362a0a6926bb805eeb4f689bad7
EVM verifier at commit 9a283fcb8b08034609ed82d81fc4cffa25b536d6
Verifier Server Template at commit d760374f9856eb0842e77f56a2021e5f946c2628

During the audit, Flare introduced an update to the State Connector Protocol and the
Attestation Client at commits 0f6f5f19aa09e2536db6031803457cedcc8129d9 and
1f9f31552514bbf23250cd171af3529eca6c900b respectively. These new commits were
reviewed only in regard with the changes made to the AddressValidity attestation
type. This led to the ATC-30 finding.

Flare stated that top-most priority for the review is the attestation definitions
themselves: their specification in markdown, the associated .sol type definition, the
.json file from which verifier code will be generated, and the verifier code itself, are all
critical to the correct working of the system.

On the other hand, the Verifier Server Template was established as a low priority
component; requiring only a cursory review to recommend best practices. The same
requirement was made referring to the CLI tool that generates code based on
attestation definitions.

While researching the project, Coinspect found a HIGH severity issue which allowed
attestors to copy other's vote without doing any work. The issue is in out-of-scope
components as it arises from the interactions between the Flare consensus code and
the StateConnector.sol contract. The issue is nevertheless included due to its impact
in the Attestation Protocol. These out-of-scope components were not reviewed in
depth.

On February 20, Flare asked Coinspect to update the Attestation client commit hash,
due to a repository cleanup. Coinspect verified that the content remains the same, and
the new commit is: 2e626430278919839c84ec172e9dc05d9aff26e9.

https://gitlab.com/flarenetwork/state-connector-protocol
https://gitlab.com/flarenetwork/mcc
https://gitlab.com/flarenetwork/attestation-client
https://gitlab.com/flarenetwork/dogeIndexerVerifier
https://gitlab.com/flarenetwork/evm-verifier
https://gitlab.com/flarenetwork/verifier-server-template
https://gitlab.com/flarenetwork/attestation-client

© Coinspect 2024 8 / 36

3.1 Fixes review

On January 22, 2024, the Flare team provided a document and a new commit
(e6cb1df2c400a5531cfd5de8789158335fce0c80) outlining how they addressed each of
the issues described in this report.

Coinspect reviewed the changes to the code and provided feedback on how to better
approach the fixes for ATC-23 and ATC-25. Coinspect also found ATC-31 was not fixed in
the provided commit. On the other hand, issues ATC-22, ATC-26, ATC-28 and ATC-30
were correctly addressed. Issue ATC-27 was acknowledged by Flare, but it has been
reassessed as a Recommendation-level issue, as it poses no risk to the platform at
the moment. Issue ATC-29 has also been acknowledged. After feedback from Flare, an
issue originally reported under ID ATC-24 has been retracted.

STC-01, an issue originally reported in this document in an out-of-scope component,
has been moved to a separate document to keep this report only about the off-chain
system.

After the feedback from Coinspect, Flare provided a new commit for the attestation
client (175fa082caf32ff1999cfdda6e2ebb9a0784c5eb) which addressed ATC-31 and
improved on the fix for ATC-23.

On February 20, Flare asked Coinspect to update the commit hashes aforementioned,
due to a repository cleanup. Coinspect verified that the content remains the same, and
the commit hashes (original, new) are:

(e6cb1df2c400a5531cfd5de8789158335fce0c80,
98eef3b9afbcec07b493af0d664b551c9d8704df)

(175fa082caf32ff1999cfdda6e2ebb9a0784c5eb,
aeaf96bfae5251bb38c52dfd46397670c914db0b)

© Coinspect 2024 9 / 36

4 Assessment

The Attestation Suite as a whole is a set off-chain programs, contracts and consensus
code that aim to feed the Flare blockchain with facts about external chains. These facts
are attested to by a set of attestors who are hand-picked by the Flare organization. The
attestors vote in rounds with a commit/reveal scheme for a merkle root which
condenses the set of facts attestors are willing to confirm happened. A merkle root is
accepted if a simple majority of attestors commit to it. Users are responsible for then
finding an attestor willing to provide a proof for the fact they are interested in, and they
can then use this proof on smart contracts on the Flare network. Ultimately, being able
to verify it reduces to the accepted merkle root using the State Connector contract.

The system is expected to be open: anyone can be a user. Users are expected to be
other developers which create smart contracts and off-chain systems that depend on
the correct verification of facts held by attestation providers. Coinspect considered this
open-ended design when considering the risk and likelihood of issues: because the
design-space for applications that use the oracle is near-infinite and the system is
open, it is expected that even issues arising only in a specific set of circumstances are
realistic and worth fixing. When possible, Coinspect has provided example of how
things might go wrong; but it is important to note that the actual implications for users
might be even worse than presented due to design decision that are impossible to
foresee.

The system contains an indexer in charge of ingesting confirmed blocks. This is done by
indexing each block after a configured amount of confirmations passed (this value
depends on each chain). This design adds a delay into the system as each block will be
indexed after the configured amount of confirmations multiplied by the average chain's
block time. Because of this architecture, the indexer has no cleanup or delete feature
as it will only process blocks after a configured amount of confirmations.

4.1 Security assumptions

Small honest majority

One of the most critical assumption the project makes is that the majority of attestors
are honest and well behaved. Coinspect has already highlighted this fact in previous

© Coinspect 2024 10 / 36

reports, but it bears repeating as the amount of attestors is only 9. An attacker with
access to only 5 attestors' private key or a collusion of only 5 entities can provide fake
information to the system. This risk was mentioned in previous reports, referencing a
past exploit to a bridge based on compromising 5 out of 9 signers.

While Flare has acknowledged and somewhat mitigated this risk by the existence of
private attestation sets (which are outside the scope of this audit); private attestation
sets are only useful for the validators running them. What is more, the collusion or
attacker can still censor attestations indefinitely.

Stable and consistent JSON-RPC responses from other
blockchains

The system assumes that JSON-RPC responses from blockchains outside the direct
control of Flare are going to be consistent in time and work correctly for a majority of
attestors through time.

No incentive schema

Flare is still developing the incentive system to make it rational for attestation
providers to run. This is specially important due to the costs of running an attestation
provider.

4.2 Decentralization

The system is only somewhat decentralized; with only 9 attestors intended to exist at
the moment. These attestors are also hand-picked by a single organization.

Due to the cost of running an attestation provider service, it is possible to envision a
market opportunity for a service that provides attestation providers with information
about the chains. This would severely degrade the already small number of
independent information providers.

4.3 Code quality

https://cointelegraph.com/news/the-aftermath-of-axie-infinity-s-650m-ronin-bridge-hack

© Coinspect 2024 11 / 36

As in previous reviews, Coinspect noted that the code has several comments with
marks of TODO and DANGER, as well as several commented out and empty files. This may
indicate that certain parts of the implementations still have not reached a definitive
state of stability.

Some examples of these observations follow:

 // DANGER: How to handle this if there are a lot of transactions with
same payment reference in the interval?

 // todo: this causes async growing - this should be queued and run from
main async

 if (typeof blockHashOrHeight === "string") {
 blockHash = blockHashOrHeight as string;
 if (PREFIXED_STD_BLOCK_HASH_REGEX.test(blockHash)) {
 blockHash = unPrefix0x(blockHash);
 }
 // TODO match with some regex
 }

 public get transactionIds(): string[] {
 // TODO update block type
 // eslint-disable-next-line @typescript-eslint/ban-ts-comment
 // @ts-ignore
 // eslint-disable-next-line @typescript-eslint/no-non-null-
assertion
 return this.data.tx!.map((tx) => prefix0x(tx));
 }

 // TODO: Ready
 public async getLastConfirmedBlockNumber(): Promise<number> {
 try {
 const tipState = await this._getTipStateObject();
 return tipState.latestIndexedHeight;
 } catch {
 // TODO: Print or at least log this
 return 0;
 }
 }

// TODO: Ready
 public async getLatestBlockTimestamp(): Promise<BlockHeightSample | null>
{
 try {
 const tipState = await this._getTipStateObject();
 return {
 height: tipState.latestTipHeight,
 timestamp: tipState.timestamp,
 };
 } catch {

© Coinspect 2024 12 / 36

 // TODO: Print or at least log this
 return null;
 }
 }

There are also snippets with comments that contradict the implementation, leaving
the desired behavior unclear:

 // Outputs without address do not break one-to-one condition
 if (oneToOne && !voutAmount.address && voutAmount.amount >=
BigInt(0)) {
 oneToOne = false;
 }

In addition, reviewers found outdated documentation, such as the following, which
mentions a non-existing getTransactionFromCache method:

// Usage:
// 1) External service should initialize relevant MCC client through
CachedMccClient wrapper class
// 2) Services should use the following call sequence
// (a) try calling `getTransactionFromCache` or `getBlockFromCache`
// (b) if response is null, then check `canAccept`.
// (i) If `true` is returned, call `getTransaction` (`getBlock`)
// (ii) if `false` is returned, sleep for a while and retry
`canAccept`. Repeat this until `true` is
// eventually returned and then proceed with (i)

Also, Coinspect identified that some files are present in the codebase but are all
commented out, this is the case of verifier-config.ts.

The code also has linter warnings and empty files, for example in:

src/servers/verifier-server/src/verification/address-validity.ts

And also in the DogeIndexerVerifier repository, inside the afauth/ directory:

serializers
tests
urls
views

4.5 Testing

While the code has a reasonable coverage, the testing scenarios are not enough for
such a critical component of the Flare ecosystem. Most tests only exercise basic

© Coinspect 2024 13 / 36

success/failure conditions. Depending on the precise repository involved, tests take
the data from either real blockchain data via indexers or with a test-data database.
Both of these data sources present problems, as adding new scenarios involve either
making actual public transactions to a blockchain and having an indexer or at least node
available; or modifying a sqlite database by hand. Important data in the database is
held in a binary blob of compressed data, further complicating the task.

These approaches are not bad, but a clear path to add new test cases to quickly
generate border scenarios is a must on these kind of projects, aiding not only in
security reviews but also to make sure that bugs are not reintroduced.

Coinspect strongly recommends that a system to provide raw JSON data mimicking a
node response as input data to tests. This way, a new test can be added simply by
creating JSON data. This would work in complement with the other tests present in
the project.

This risk of not being able to quickly and effectively test transactions without them
being available on a public chain is highlighted in ATC-29. Coinspect had already
highlighted deficiencies in the test system before. See ATC-7.

© Coinspect 2024 14 / 36

5. Detailed Findings

ATC-22

EVMTransaction specification allows rugpulls
to appear legitimate

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

state-connector-protocol/contracts/interface/types/EVMTransaction.sol

A scammer doing a rugpull can use the EVMTransaction specification to make their
scam appear legitimate. Innocent users are misled by the attestation spec
assertion that an event's first topic is always the event signature. Both the
specification in markdown, its associated definition and all the code generated
from it make the same mistake:

| `topics` | `bytes32[]` | An array of up to 4 32-byte
strings of indexed log arguments. The first string is the signature of

© Coinspect 2024 15 / 36

the event. |

 /**
 * @notice Event log record
 * @custom:above An `Event` is a struct with the following fields:
 * @custom:below The fields are in line with [EVM event logs]
(https://ethereum.org/en/developers/docs/apis/json-
rpc/#eth_getfilterchanges).
 * @param logIndex The consecutive number of the event in block.
 * @param emitterAddress The address of the contract that emitted
the event.
 * @param topics An array of up to four 32-byte strings of indexed
log arguments. The first string is the signature of the event.
 * @param data Concatenated 32-byte strings of non-indexed log
arguments. At least 32 bytes long.
 * @param removed It is `true` if the log was removed due to a
chain reorganization and `false` if it is a valid log.
 */
 struct Event {
 uint32 logIndex;
 address emitterAddress;
 bytes32[] topics;
 bytes data;
 bool removed;
 }

The EVM has no rule about what the first topic of an event is. Solidity programs
generally include the signature in the first topic; but programmers can use the
anonymous keyword on an event to set an arbitrary first topic. Programmers might
also be using raw assembly or even other languages where the default behavior is
different.

An attacker can abuse this mistaken assertion to make a seemingly innocent
bridge contract that has a backdoor. Consider a cross-chain mint: the attacker can
create a method that appears to mint only if a certain event has been emitted, but
by creating a backdoor with an anonymous method they are able to mint an
unlimited supply for themselves, breaking the supposed peg.

It is worth noting that this specification can also lead to mistakes by non-malicious
developers who simply use the anonymous keyword in their contracts that depend
on the attestation.

Proof of Concept

The following case is a minimal example of a bridge that relies on the Attestation
Client to determine if a transaction was made in the underlying chain.

© Coinspect 2024 16 / 36

For simplicity, the code is Solidity based pseudo-code and simplifies a lot of
interactions and checks.

// Flare Side
contract FlareReceiver {
 address ethSide;

function verifyPaymentInETHAndMintWithRewards(ETHTx ethTx, byte[]
proof) {
 // assume state connector reverts if proof is not ok
 stateConnector.verifyETHTransaction(ethTx, proof)
 // starting from now we can assume tx actually happened in
eth

// the flare side will now check that the transaction was to
 // the bridge on the ethSide and that the first
 // element in the signature is the signature of the
 // event "PaymentMade(address)"
 require(ethTx.events.length > 0);
 bytes32[] topics = ethTx.events[0].topics
 require(topics.length == 2)
 require(topics[0] == keccack256("PaymentMade(address)")[0:4],
 "not correct event");
 require(ethTx.events[0].emmiter == ethSide,
 "not to our bridge");
 address to = address(topics[1]);
 mint(to, ethTx.value);
 }
}

// ETH Side
contract ETHBridge {
 event PaymentMade(address indexed to);
 event Commitment(bytes32 indexed commit, address indexed from)
anonymous;

address private owner;

constructor() {
 owner = msg.sender;
 }

function transferToFlare(to address) payable {
 emit PaymentMade(to);
 }

// debugging event function, return my money in case i mess up
 function commit(bytes32 commitment) {
 require(msg.sender == owner, "not the owner");
 emit Commitment(commitment, msg.sender);
 msg.sender.call(msg.value);
 }
}

The commit method is now a subtle backdoor for the attacker, who can simply call
it a commitment that is keccack256("PaymentMade(address))[0:4] to mint and
break the peg.

© Coinspect 2024 17 / 36

The users that want to check the correct functioning of the bridge would see the
attestation specification and believe the contract is well behaved.

* @param topics An array of up to four 32-byte strings of indexed log
arguments. The first string is the signature of the event.

Recommendation

Change the spec to consider also the case where an anonymous event is attested.

Status

Fixed. The specification has been updated so as not mislead users.

© Coinspect 2024 18 / 36

ATC-28

Scammers can trick users into sending
payments that they can denounce as non-
existent

Status

Solved

Resolution

Fixed

Risk
High

Impact
High
Likelihood
High

Location

src/servers/verifier-server/src/verification/generic-chain-
verifications.ts

Description

The PaymentNonExistent attestation is supposed to be valid when a payment has
not been made. Nevertheless, due to a hardcoded value in the code, the
attestation only considers payments made from the first input on an UTXO
transaction. This does not correspond with the specification and makes honest
payers liable to be denounced by dishonest participants.

A scam would work roughly as follows: an attacker deploys Flare-side contract
that requires depositing a collateral in exchange for a payment in an UTXO-chain
like BTC. If the user makes a payment, the collateral plus a reward is transferred

© Coinspect 2024 19 / 36

to them. If the user did not make the payment, the collateral is kept by the
contract.

There would also be a frontend the victim interacts with. As an incentive to
participate, the frontend would offer to subsidize the payment, even 100%. The
frontend would craft a BTC transaction that made the payment with the first input
unlocking a UTXO with a non-standard script controlled by the attacker.

The user can analyze all the facts and, if following all the documentation, conclude
that this would result in free money. Nevertheless, due to a quirk in how
ReferencedPaymentNonexistence is implemented, the attacker would be able to
denounce the victim as non-paying, even when they payed, only by virtue of
controlling the first input of the transaction. The scammer needs to make sure that
input unlocks an UTXO that is not-standard and thus does not have an address
associated.

Due to:

1. The first input being controlled by the attacker,
2. and the UTXO unlocked by that input having a non-standard script and thus

no address.

The attestation would result in success, as the verifier checks only the first input
to request the paymentSummary.

 // TODO: standard address hash
 const destinationAddressHashTmp =
Web3.utils.soliditySha3(address);
 if (destinationAddressHashTmp ===
request.requestBody.destinationAddressHash) {
 const paymentSummary = fullTxData.paymentSummary({ inUtxo: 0,
outUtxo });

While this is OK in most scenarios, as the inputs are not important when verifying
if a payment has been made, if the input does not hve an address, an error is
returned from the mcc library:

 const spentAmount = this.spentAmounts[inUtxo];

if (!spentAmount.address) {
 return { status: PaymentSummaryStatus.NoSpentAmountAddress
};
 }

This address is simply the address of the scriptPubKey of the prevout of the input:

 return {
 address: mapper?.prevout?.scriptPubKey?.address,

© Coinspect 2024 20 / 36

 amount: amount,
 utxo: mapper?.vout,
 } as AddressAmount;
 });

As the status is NoSpentAmountAddress, the verifier will break the for-loop:

 // TODO: standard address hash
 const destinationAddressHashTmp =
Web3.utils.soliditySha3(address);
 if (destinationAddressHashTmp ===
request.requestBody.destinationAddressHash) {
 const paymentSummary = fullTxData.paymentSummary({ inUtxo: 0,
outUtxo });

if (paymentSummary.status !== PaymentSummaryStatus.Success) {
 // Payment summary for each output matching the destination
address is equal, so the destination address has been processed.
 break;
 }

This would ultimately end with the attestation being OK, and the scammer
successfully denouncing a payment that was effectively made, as if it were non-
existent.

Keep in mind that the ReferencedPaymentNonExistence specification makes no
mention of only the first input being considered.

Recommendation

Iterate over the inputs of a transaction instead of checking only the first one.

Status

Fixed. The attestation now ignores the inputs of the transaction and only considers
outputs, making it more straightforward and less error prone.

© Coinspect 2024 21 / 36

ATC-29

Limited tests for MCC's transaction
attestation

Status

Caution Advised

Resolution

Deferred

Risk
Medium

Impact
Medium
Likelihood
High

Description

The core functionality of MCC is attest the inclusion of transactions. The test
system relies on transactions being available on public chains, making it
impossible to verify the attestation mechanism at the required extension.

This is specially important for UTXO chains that allow transactions to have
arbitrarily complex scripts, whereas the handling procedures must be tested
exhaustively against adversarial scenarios.

For example, consider the tests in MCC that test that checks for correct parsing of a
payment summary:

describe.skip(`TESTNET: BTC payment summary with op return,
${getTestFile(__filename)}`, function () {
 let MccClient: MCC.BTC;
 let transaction: BtcTransaction;
 const txid =

© Coinspect 2024 22 / 36

"67926749297f9ef450071585526fc2c0d0f1b9e40a8ac50d124c2e6d53c2c3b3";

before(async function () {
 MccClient = new MCC.BTC(BtcMccConnection);
 transaction = await MccClient.getTransaction(txid);
 });

// it("Should return status", async function () {
 // const status = await MccClient.getNodeStatus();

// console.log("status", status.version);

// console.dir(status, { depth: 10 });
 // });

it("Should be full transaction", async function () {
 expect(transaction.type).to.eq("payment");
 });

it("Should get payment summary", async function () {
 const ps = await transaction.paymentSummary({ inUtxo: 0,
outUtxo: 1 });
 console.dir(ps, { depth: 10 });
 });
});

The test:

1. Depends on a single transaction found on testnet
2. Does not run because it is marked as skip
3. If if was not marked as skip, one of the scenarios just uses console.log and

will thus never fail.

Recommendation

Implement a system that tests transactions without them necessarily being on
chain. This should complement more integrated tests that interact with actual
nodes running testchains.

Review and improve tests to make sure negative scenarios are covered. For
example, there should tests that checks what is not a transaction with a payment
reference.

Status

Deferred. Flare is in the process of decoupling components of the attestation
system, which will make testing more flexible.

© Coinspect 2024 23 / 36

ATC-23

Legacy transactions result in wasted gas

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
Low
Likelihood
High

Location

attestation-client/src/utils/helpers/Web3Functions.ts

Description

Attestors use legacy transactions instead of the new Type-2 transactions
introduced by EIP1559.

By using legacy transactions, attestors are wasting gas by blindly specifying a
gasPrice instead of taking advantage of the predictable baseFee to potentially pay
less for transactions.

Research supports the claim that adopting new-style transactions lead to lower
gas usage.

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
https://arxiv.org/pdf/2201.05574.pdf

© Coinspect 2024 24 / 36

Transactions are signed and sent with Web3Functions._signAndFinalize3(), which
specifies a gasPrice directly, meaning they are legacy.

private async _signAndFinalize3(label: string, toAddress: string,
fnToEncode: any): Promise<any> {
 try {
 const nonce = await this.getNonce();
 const gasPrice = await this.gasPrice();
 const tx = {
 from: this.account.address,
 to: toAddress,
 gas: this.gasLimit,
 gasPrice: gasPrice,
 data: fnToEncode.encodeABI(),
 nonce,
 };

{...}
}

Recommendation

Add EIP1559 compatibility by using using the max_priority_fee_per_gas and
max_fee_per_gas fields when signing and sending transactions.

© Coinspect 2024 25 / 36

Status

Fixed. The change originally set the maxPriorityFeePerGas to zero, which is not
recommended. Flare updated the fix with a new default value of 20Gwei which can
be overriden by operators.

https://docs.alchemy.com/docs/maxpriorityfeepergas-vs-maxfeepergas#what-is-maxpriorityfeepergas-a-hrefwhat-is-max-priority-fee-per-gas-idwhat-is-max-priority-fee-per-gasa

© Coinspect 2024 26 / 36

ATC-26

Consensus might never be reached

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Medium

Location

attestation-client/src/attester/FlareDataCollector.ts

Description

Attestors might not reach consensus on bit voting or merkle roots because as the
eventComparator used to sort events fails to consider the case when a.logIndex >
b.logIndex, presumably because of a typo which makes it read a.logIndex >
a.logIndex:

 private eventComparator(a: any, b: any): number {
 if (a.blockNumber < b.blockNumber) return -1;
 if (a.blockNumber > b.blockNumber) return 1;

if (a.logIndex > a.logIndex) return -1;
 if (a.logIndex < b.logIndex) return 1;

return 0;
 }

© Coinspect 2024 27 / 36

This makes the eventComparator a non-well-defined comparator, in particular
because it does not comply by the anti-symmetry property: eventComparator(2,3)
== 1 but eventComparator(3,2) == 0. As the property is not upheld, the behavior
is not well defined:

If a comparing function does not satisfy all of purity, stability,
reflexivity, anti-symmetry, and transitivity rules, as explained in the
description, the program's behavior is not well-defined.

Attestors will presumably run the code with NodeJS and thus use the same V8
engine, minimizing the risk fact that the undefined behavior shows in practice.

Nevertheless, in Coinspect tests the behavior when using the eventCompartor is
simply to not sort the array and keep it as-is.

This makes the sorting of events useless, and in turn introduces the risk that
different RPC providers return events in different order. Attestation providers will
thus not reach agreement when bit voting or committing to a merkle root.

Recommendation

Fix the third rule of eventComparator so it compares both events' indexes.

Status

Fixed. The comparison is now correct.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort#sorting_with_non-well-formed_comparator

© Coinspect 2024 28 / 36

ATC-30

Proof server will eventually halt due to ever-
growing cache

Status

Solved

Resolution

Fixed

Risk
Medium

Impact
High
Likelihood
Low

Location

src/servers/web-server/src/services/proof-engine.service.ts

Description

Users will be unable to request proofs from attestors because, eventually, the
server will stop due to caches getting to big.

 // never expiring cache. Once round data are finalized, they do not
change.
 // cache expires only on process restart.
 private cache = {};
 private requestCache = {};

While the cache map is fairly contained in size, the requestCache contains an array
of data for each round.

© Coinspect 2024 29 / 36

While the issue is considered of LOW likelihood due to the time needed to
experience degradation considering the amount of data being stored; its impact is
HIGH because users will be unable to request their attestation proof at some
point in time, creating a time window for attackers.

Consider also that instances of this same vulnerability have already been reported:
ATC-3 and VER-1.

Recommendation

Make sure caches are cleared periodically.

Status

Fixed. Caches are now cleaned.

© Coinspect 2024 30 / 36

ATC-25

Attackers can perform exhaustive search on
passwords

Status

Caution Advised

Resolution

Partially Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

src/utils/security/encrypt.ts

Description

Attackers can try to perform exhaustive search on the encryption keys because the
system does not use a PKDF to derive the encrpytion key from a password, instead
it uses SHA256.

export function encryptString(password: string, text: string): string {
 const passwordHash = crypto.createHash("sha256").update(password,
"ascii").digest();
 const initVector = crypto.randomBytes(16);
 const cipher = crypto.createCipheriv("aes-256-gcm", passwordHash,
initVector);
 const encbuf = cipher.update(text, "utf-8");
 return Buffer.concat([initVector, encbuf]).toString("base64");
}

© Coinspect 2024 31 / 36

PKDF are the recommended way to store passwords, as they are slower to brute-
force.

Recommendation

Use a PKDF, such as scrypt. PKDF generally have some parameters that need to
be adjusted for the desired security level.

While a common recommendation for scrypt is N=16384, r=8, p=1; Coinspect
recommends a bigger N for modern hardware if the performance cost is acceptable.
Our recommendations are:

For interactive, web logins: N=65536, r=8, p=1 (~85ms)
For file encryption or critical passwords: N=2097152, r=8, p=1 (~2.5ms)

The performance was measured on a high-end desktop PC. The stronger
parameters are intended to protect critical data or when login is needed only a few
times a day. For example, a wallet-protected password with access to an
encrypted private key where the user logins only once a day. In this specific case,
the stronger parameters would be the recommended ones.

Other PKDF algorithms are available: argon2 and bcrypt are also good choices if
scrypt is not available or desirable for any reason.

Status

Partially fixed. scrypt is now used, but the salt parameter is the fixed string
"Flare". A random string per user can improve the safety of the passwords. Flare
has acknowledged this and stated that they expect to redesign this part of the
codebase in the future.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63b.pdf
https://pkg.go.dev/golang.org/x/crypto/scrypt?utm_source=godoc

© Coinspect 2024 32 / 36

ATC-27

Missing members in the EVMTransaction
attestation response

Status

Solved

Resolution

Acknowledged

Risk
None

Impact
Recommendation
Likelihood
_

Location

state-connector-protocol/contracts/interface/types/EVMTransaction.sol

Description

The EVMTransaction attestation does not include some transaction properties such
as the gas spent, gas fees and, gas price, which could be relevant for a third party
app.

The response has the following members:

 struct ResponseBody {
 uint64 blockNumber;
 uint64 timestamp;
 address sourceAddress;
 bool isDeployment;
 address receivingAddress;
 uint256 value;

© Coinspect 2024 33 / 36

 bytes input;
 uint8 status;
 Event[] events;
 }

For example, developers using Flare's Attestation Client won't be able to check
that a transaction has not return bombed the sender on the underlying EVM,
because the gas spent is not part of the response body.

Say that a protocol operates on Flare and Ethereum, and works similarly to
FAssets but allows agents to deploy contracts on both chains (non-EOA accounts
on both sides). With this type of attestation, the project can't check that deposit
transactions on the Ethereum side used a reasonable amount of gas (for example,
between an estimated range). Because of this, the protocol can't decide, for
example, when to slash or challenge a malicious actor that makes a griefing attack
on their users if they have stakes in the Flare side.

Recommendation

Evaluate including more relevant transaction parameters into the EVMTransaction's
response body.

Status

Acknowledged. Flare has stated they will consider adding these if there is demand
for them.

© Coinspect 2024 34 / 36

ATC-31

Users are led to errors by different responses
in testnet and mainnet

Status

Solved

Resolution

Fixed

Risk
Low

Impact
Low
Likelihood
Low

Location

src/servers/verifier-server/src/verification/address-validity/address-
validity-btc.ts

Description

The error can be found in the verifyAddressBTC method. When a BTC address has
the wrong leading byte, testnet will answer with a NOT_CONFIRMED status.

For example, addresses 3ZutBt4wHMh3ikFJ2HfB1sQYWurg6f3r6U and
maaj43o2wt34j31ej5pmP6htCHFP8coUHg for mainnet and testnet are invalid in the
same way, but the verifier will give different responses.

Recommendation

© Coinspect 2024 35 / 36

Make sure testnet and mainnet responses are identical.

Status

Fixed. The method now behaves the same in testnet and mainnet.

Proof of concept

Test added to test/addressValidity/btcAddress.test.ts.

 it.only("should give same result for invalid P2SH testnet and
mainnet", function () {
 const address = "3ZutBt4wHMh3ikFJ2HfB1sQYWurg6f3r6U";
 const testnet = "maaj43o2wt34j31ej5pmP6htCHFP8coUHg";

const resp = verifyAddressBTC(address, "");
 const respTestnet = verifyAddressBTC(testnet, "TESTNET");
 console.log("mainnet response");
 console.log(resp);
 console.log("testnet response");
 console.log(respTestnet);

expect(resp.status).to.eq(respTestnet.status);
 expect(resp.response.isValid).to.eq(respTestnet.response.isValid);
 });

Output:

mainnet response
{
 status: 'OK',
 response: {
 isValid: false,
 standardAddress: '',
 standardAddressHash:
'0x00'
 }
}
testnet response
{ status: 'NOT_CONFIRMED' }
 1) should give same result for invalid P2SH testnet and mainnet

0 passing (6ms)
 1 failing

© Coinspect 2024 36 / 36

6. Disclaimer

The information presented in this document is provided "as is" and without warranty.
The present security audit does not cover any on-chain systems or frontends that
communicate with the network, nor the general operational security of the organization
that developed the code.

